Causal diagrams and the identification of causal effects

Saikumar Chalasani

IVT
ETH
Zürich

June 2006
Overview

Causal diagrams

Interventions in Markovian models

Confounding bias

Intervention calculus

Identifiability tests

An example from Transport domain
Causal diagrams – Causal effect

Figure 3.1: A causal diagram representing the effect of fumigants (X) on yields (Y).

\[Z_0 = f_0(\epsilon_0), \quad B = f_B(Z_0, \epsilon_B), \]
\[Z_1 = f_1(Z_0, \epsilon_1), \quad X = f_X(Z_0, \epsilon_X), \]
\[Z_2 = f_2(X, Z_1, \epsilon_2), \quad Y = f_Y(X, Z_2, Z_3, \epsilon_Y), \]
\[Z_3 = f_3(B, Z_2, \epsilon_3). \]

\[
P(x_1, ..., x_n) = \prod_i P(x_i \mid pa_i), \quad (3.5)
\]
\[
P(z_0, x, z_1, b, z_2, z_3, y) = P(z_0)P(x\mid z_0)P(z_1\mid z_0)
\times P(b\mid z_0)P(z_2\mid x, z_1)
\times P(z_3\mid z_2, b)P(y\mid x, z_2, z_3). \quad (3.6)
\]
Causal effect

Given two disjoint sets of variables, X and Y, the causal effect of X on Y, denoted either as $P(y|x)$ or as $P(y|do(x))$, is a function from X to the space of probability distributions on Y.

For each realization x of X, $P(y|x)$ gives the probability of $Y = y$ induced by deleting from the model of (3.4) all equations corresponding to variables in X and substituting $X = x$ in the remaining equations.

$$P(y \mid x^\wedge) = \sum_{Z_1} \sum_{Z_2} \sum_{Z_3} P(y \mid z_2, z_3, x) P(z_2 \mid z_1, x) \times \sum_{z_3} P(z_3 \mid z_1, z_2, x') P(z_1, x')$$
Interventions as variables

\[P(x_i \mid pa_i) = \begin{cases}
 P(x_i \mid pa_i) & \text{if } F_i = \text{idle,} \\
 0 & \text{if } F_i = \text{do}(x_i') \\
 1 & \text{if } F_i = \text{do}(x_i') \text{ and } x_i \neq x_i'.
\end{cases} \]

\[P(x_1, \ldots, x_n \mid \tilde{x}_i') = P'(x_1, \ldots, x_n \mid F_i = \text{do}(x_i')) \]

where \(P' \) is represented by \(G' \)
Computing the effect of interventions

Truncated factorization formula

\[
P(x_1, \ldots, x_n | \tilde{x}_i') = \begin{cases}
\prod_{j \neq i} P(x_j | pa_j) & \text{if } x_i = x_i', \\
0 & \text{if } x_i \neq x_i'.
\end{cases}
\]

\[
P(x_1, \ldots, x_n) = \prod P(x_i | pa_i),
\]

\[
P(x_1, \ldots, x_n | \tilde{x}_i') = \begin{cases}
\frac{P(x_1, \ldots, x_n)}{P(x_i' | pa_i)} & \text{if } x_i = x_i', \\
0 & \text{if } x_i \neq x_i'.
\end{cases}
\]

\[
P(x_1, \ldots, x_n) = \prod P(x_i | pa_i).
\]
Adjustments for direct cause

Let PA_i denote the set of direct causes of variable X_i, and let Y be any set of variables disjoint of $\{X_i \cup PA_i\}$. The effect of the intervention $do(X_i = x'_i)$ on Y is given by

$$P(y|\bar{x}'_i) = \sum_{pa_i} P(y|x'_i, pa_i)P(pa_i), \quad (3.13)$$

where $P(y|x'_i, pa_i)$ and $P(pa_i)$ represent preintervention probabilities.

Compute $P(y|\bar{x}'_i)$???
Identifiability

Let $Q(M)$ be any computable quantity of a model M. We say that Q is identifiable in a class M of models if, for any pairs of models M_1 and M_2 from M, $Q(M_1) = Q(M_2)$ whenever $P_{M_1}(v) = P_{M_2}(v)$.

If our observations are limited, and permit only a partial set F_M of features (of $P_M(v)$) to be estimated, we define Q to be identifiable from F_M if $Q(M_1) = Q(M_2)$ whenever $F_{M_1} = F_{M_2}$.
Causal-effect identifiability

The **causal effect** of X on Y is said to be **identifiable** from a graph G if the quantity $P(y|\hat{x})$ can be computed uniquely from any positive probability of the observed variables—that is, if $P_{M_1}(y|\hat{x}) = P_{M_2}(y|\hat{x})$ for every pair of models M_1 and M_2 with $P_{M_1}(v) = P_{M_2}(v) > 0$ and $G(M_1) = G(M_2) = G$.

$$P(y|\hat{x}_i) = \sum_{pa_i} P(y|x_i, pa_i) P(pa_i), \quad \text{(3.13)}$$

Given a causal diagram G of any Markovian model in which a subset V of variables are measured, the causal effect $P(y|\hat{x})$ is identifiable whenever $\{X \cup Y \cup PA_X\} \subseteq V$, that is, whenever X, Y, and all parents of variables in X are measured. The expression of $P(y|\hat{x})$ is then obtained by adjusting for PA_x, as in (3.13).

Given the causal diagram G of any Markovian model in which all variables are measured, the causal effect $P(y|\hat{x})$ is identifiable for every two subsets of variables X and Y and is obtained from the truncated factorization of (3.14).

$$P(x_1, \ldots, x_n|\hat{s}) = \begin{cases} \prod_{i: x_i \notin S} P(x_i|pa_i) & \text{for } x_1, \ldots, x_n \text{ consistent with } s, \\ 0 & \text{otherwise.} \end{cases} \quad \text{(3.14)}$$
Controlling confounding bias – Back-Door Criterion

A set of variables Z satisfies the back-door criterion relative to an ordered pair of variables (X_i, X_j) in a DAG G if:

(i) no node in Z is a descendant of X_i; and

(ii) Z blocks every path between X_i and X_j that contains an arrow into X_i.

Back-Door Adjustment

If a set of variables Z satisfies the back-door criterion relative to (X, Y), then the causal effect of X on Y is identifiable and is given by the formula

$$P(y|\hat{x}) = \sum_z P(y|x, z)P(z).$$
Controlling confounding bias – Front-Door Criterion

A set of variables Z is said to satisfy the **front-door** criterion relative to an ordered pair of variables (X, Y) if:

(i) Z intercepts all directed paths from X to Y;

(ii) there is no back-door path from X to Z; and

(iii) all back-door paths from Z to Y are blocked by X.

Front-Door Adjustment

If Z satisfies the front-door criterion relative to (X, Y) and if $P(x, z) > 0$, then the causal effect of X on Y is identifiable and is given by the formula

$$P(y|x) = \sum_z P(z|x) \sum_{x'} P(y|x', z) P(x').$$
Intervention calculus – Rules of d Calculus

Let G be the directed acyclic graph associated with a causal model as defined in (3.2), and let $P(\cdot)$ stand for the probability distribution induced by that model. For any disjoint subsets of variables X, Y, Z, and W we have the following rules.

Rule 1 (Insertion/deletion of observations):

$$P(y|\tilde{x}, z, w) = P(y|\tilde{x}, w) \quad \text{if} \quad (Y \perp Z|X, W)_{G_X}.$$

Rule 2 (Action/observation exchange):

$$P(y|\tilde{x}, \tilde{z}, w) = P(y|\tilde{x}, z, w) \quad \text{if} \quad (Y \perp Z|X, W)_{G_{XZ}}.$$

Rule 3 (Insertion/deletion of actions):

$$P(y|\tilde{x}, \tilde{z}, w) = P(y|\tilde{x}, w) \quad \text{if} \quad (Y \perp Z|X, W)_{G_X, \overline{Z(W)}},$$

where $Z(W)$ is the set of Z-nodes that are not ancestors of any W-node in G_X.
Implications of d-Calculus

A causal effect $q = P(y_1, ..., y_k | \hat{x}_1, ..., \hat{x}_m)$ is identifiable in a model characterized by a graph G if there exists a finite sequence of transformations, each conforming to one of the inference rules in Theorem 3.4.1, that reduces q into a standard (i.e. “hat”-free) probability expression involving observed quantities.
Notations of *do* Calculus

![Diagram of do calculus notations](image)

Figure 3.6: Subgraphs of G used in the derivation of causal effects.

- $G_{\overline{X}}$: remove arrows pointing to X
- $G_{\overline{X}}$: remove arrows emanating from X
- G_{XZ}^{-}: remove ears of X and legs of Z

$$P(y | \overline{x}, z) \triangleq \frac{P(y, z | \overline{x})}{P(z | \overline{x})}$$
Graphical tests of Identifiability

Identifying models
Non-identifying models

Figure 3.7: (a) A bow pattern: a confounding arc embracing a causal link $X \rightarrow Y$, thus preventing the identification of $P(y|x)$ even in the presence of an instrumental variable Z, as in (b). (c) A bowless graph that still prohibits the identification of $P(y|x)$.

Identifying models

Figure 3.8: Typical models in which the effect of X on Y is identifiable. Dashed arcs represent confounding paths, and Z represents observed covariates.
Non-identifying models

![Diagram of non-identifying models](image)

Figure 3.9: Typical models in which $P(y|\tilde{x})$ is not identifiable.
Excursions $\sim [f(\text{Socio-demographics}) + f(\text{Mobility tool ownership}) + f(\text{Land-use type}) + f(\text{Survey characteristics})]$
Simple regression model

\[
\text{for } (i \text{ IN } 1 : K) \\
\text{socio-demo}[i] \rightarrow \text{age}[i] \rightarrow \text{gender}[i] \rightarrow \text{hh-income}[i] \rightarrow \text{working}[i] \rightarrow \text{hh-size}[i] \rightarrow \text{car}[i] \\
\text{survey-challenge}[i] \rightarrow \text{per-inf}[i] \rightarrow \text{rep-prd}[i] \rightarrow \text{trips}[i] \rightarrow \text{tfc}[i] \rightarrow \text{excursions}[i] \\
\text{f.working} \rightarrow \text{f.hh-income} \rightarrow \text{f.gender} \rightarrow \text{f.age} \rightarrow \text{f.hh-size} \rightarrow \text{f.per-inf} \rightarrow \text{f.rep-prd} \rightarrow \text{f.car} \rightarrow \text{f.PT-tickets} \rightarrow \text{f.tfc}
\]
Random-effect regression model
Random effect regression model for multi-source data
Adequacy of the model

Model complexity

Model with lease number of free (in-effective) parameters is the least complex

Model fit

Model with maximum likelyhood function (Deviance information criterion – DIC) fits the best