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The kernd ridge regression method (see e.g. the “ The Elements of Statigtica Learning”

by T. Hastie R. Tibshirani J. H. Friedman, Springer, 2001) isaregularized least square
method for classfication and regresson. Thelinear versonissimilar to Fisher’s
discriminant for classficaion. The nortlinear verson issimilar to an SVM, except that
adifferent objective is being optimized, which does not put emphasis on points close to
the decision boundary. The solution depends on ALL the training examples (not on a
subset of support vectors.) Hence, the method is suitable only for datasets with few
training examples. For the linear version, the kernd trick is useful if the number of
featuresislarge and the number of examples smdl. In the opposite case, one should not
use thekernd trick and work in direct space. Thisalows usto build ridge regresson
linear classfiers for asmall number of features and many training examples. An

advantage of kerne ridge regresson isthat there exist formulas to compute the leave-
one-out mean-squared error and classification error rate using the results of asingle
training on the whole training s&t, i.e. without actualy performing the leave-one-out.
Hence, the hyper- parameters (the ridge and the kernd parameters) can be optimized
efficently. In addition, if an implementation with sngular value decompaostion is made,
one can compute with a Single training the solutions corresponding to many vaues of the
ridge. Combined with the leave- one-out formula, this renders the ridge optimization very
efficient.

Pseudo-inverse and ridge

We present an implementation of kernel ridge regresson using the pseudo-inverse. We
first describe the linear case and then move to the non-linear case viathe kernd trick.

Let X be the data matrix of dimension (p, n), p patterns, n features. Let y be the target
matrix of dimenson (p, 1). Let X1 be the data matrix augmented by the unity vector 1 of
dimengion (p, 1) that contains only one values. X1=[X, 1]. X1 istherefore of dimenson
(p, n+1). Linear regression seeks to solve the following matrix equation:

X1[w;b] =y D
Where wif the weight vector of dimension (1, n) and b the bias value. Prime denotes
meatrix trangposition.

The resulting regresson mechineis.

f(x) = x.w +b, 2
where x isan input pattern of dimendon (1, n). In the case of classfication, vector y
contains binary vaues (e.g. 1, we discuss target vaues in mode details later). Function
f(x) isthen used as alinear discriminant, the sign of which is used to classify pattern x.
The best set of parametersin the least square senseis given by:

[w; bl =X1"y ©)
where X1 isthe pseudo-inverse of X1. There are many ways of computing the pseudo-
inverse, but they never require computationaly more than what isrequired to invert a
matrix of dimension (p, p) or (n, n), whichever is smalest. (For an introduction on



pseudo-inverse, see: Regression and the Moore- Penrose pseudo-inverse, Academic Press,
1972).
We recommend to define one of the two following mairices (whichever is smdler):
G=X1 X1+d]I of dim (n+1, n+1) 4
or K=X1X1 +dI of dm (p, p) (5)
where | isthe identity matrix of the right dimengion. The coefficient d (ridge) can be
chosen large enough that the matrix isinvertible (e.g. d=10"1°). The method to optimize d
isdiscussed later. The “true’” pseudo-inverseis obtained in thelimit of d going to zero,
but better predictors are obtained with non-negligible vadues of d, for reasons that are
well understood by regularizatior/learning theory.
Then, the pseudo-inverse is computed as.
X1"=Gixr (6)
o X1'=X1 K™, 7)
The following theorem (see Albert’ s book) alows in fact to use either formula (6) or (7)
provided that the pseudo-inverse (not the true inverse) of G or K is taken:
X1'=G" X1 = X1 K*, (8)
This not aways computationdly interesting, but it will become handy in whet follows for
other reasons.
Formula (8) shows that this method can easily be turned into a kernd method.
Subdtituting (8) into (3) and applying it to (2), we get the following predictor:

f(x) =[x, 1] X1 K"y 9)
that we can re-write as.
f(x) =k(x)’ K"y (10)

where k(x) isa(p, 1) dimensiona vector whose components are dot products of [x, 1]
and of linesof X1. To generdize to any kernd method, it suffices to replace the dot
product by another kernel function k(x, x’). Then,

K = [k(xi, x;)] (11)
whereindicesi and j run from 1 to p (dl training patterns), and
k(x) = k(X, X)) (12)

whereindex i runsfrom 1top.
From formula (10) we can aso make gpparent that f(x) isalinear combination of kernd
functions:

f(x) = k(X)' b = Sj b k(X, xi) (13)
where

b=K"y 19

The connection to Fisher’s linear discriminant may not be obvious, but in can be shown
(Duda and Hart, 1973) that using this method is equivaent to Fisher’s linear discriminant
in the following case: classtarget values +1 are replaced by p/p; and —p/p,, where p; and
p2 are the number of examples of the posgitive and negative class respectively. This does
not aways turn out to give better results than using targets +1 when the class cardindities
are different.

The kerndl regression method described above has been re-discovered severd times and
is known under various names (e.g. “ridge regresson” (Hoerl-Kennard), “regularization
networks’ (Poggio-Giros), neurd network “weight-decay”, see higtoricd in
http://www.anc.ed.ac.uk/~mjo/intro/nodel9.html). Since it is over 20 year-old one should




not worry about patent infringement. Unlike SVMs it does not provide a sparse solution
(the sum runs over dl the examples, not only on the support vectors. But it often provides
amilar performance and may be faster to train (depending on implementations.)

Ridge optimization
Mogt of the computationd time is spent to invert matrix G or K (Equations 4 and 5),
whichever is smdlest. To optimize the ridge, one must perform such inversion for
variousvauesof d. Fortunately, this can be performed efficiently: One must perform an
elgen value decomposition of G or K, eg. for K:

K=UDV (15)
where U and V are orthogona matrices and D is a diagond matrix of eigen vectors.
Theinverse of K isobtained as

K*=v' D'V (16)
Conveniently, if we cdl Ko the matrix with aridge of zero, theinverseof Kq=Kp +d |
can be computed as:

Kgl=Vv'(D+d YU
where Ko=UDV. Theinversgon of adiagond matrix being trivid, once the eigen
decomposition of Ky is performed, obtaining solutions for various vaues of theridgeis
inexpengve.
Optimizing the ridge is rendered further efficient by the leave-one-out caculations
explained in the next section.

L eave-one-out caculations
The performance of a predictor can be assessed in a number of ways. For regression, one
typicaly computes the meansquare-error (mse):

mee=<(y —§)° > (17)
For classification, one computes the error rate:
errate = < Q(-yy) > (18)

where Q(.) denotesthe function that has value 1 if the argument is positive and zero
otherwise.

Thenotation < . > indicates that an average is taken over anumber of patterns. If the
average is taken over the training examples used to adjust the parameters, the estimation
of performanceis biased (lower mse and error rate than on unseen examples). Therefore
it is preferable to use unseen test examples to estimate performance. However, thisis
often impractical because examples are scarce.

An dternative method is to use cross-vaidation, that isto train on a subset of examples
and test on the rest and rotate through the examples many times. In the limit, one trains
on al the examples but one and test on the remaining example. The predictions on the
examples held out are used to assess performance (leave- one-out method.)

The leave-one-out method is computationaly expensive because p models need to be
trained. Fortunately, in the case of the least-square linear modd, there are formulas to
compute the leave- one-out Satigtics without having to train more than one mode on al
the examples.

Let uscal XX the projection matrix onto the subspace spanned by the column vectors of
X (for smplicity we leave out the 1 column used to set the bias value). Let uscall r; the it
resdud:



A i =i —y. (19)
Thei" leave-one-out residud is given by (Efron-Tibshirani, 1993):

E=Ti / [1—( XX+)ii] (20)
The leave-one-out mse follows:
mse |00 = (Up) Si=1.p &7 (21)

The mse_|oo thus computed is exact.

Similarly, there exigts aformulato compute the leave-one-out error rate (Opper-Winther,
1999). Such formula however is approximate, but it is a very good approximation. The
method conssts in replacing the predicted value y in formula (18) by:

Yiooi = Vi—1ib; (22)
wherethe b; coefficients are obtained from [(XXT+dI) 1Y];, and the| ; coefficients are
obtained from —d+[L/[(XXT+dI) Y ;.

Theresulting leave-one-out error rate is obtained as:

errate 100 = (1/p) Siz1.p Q(-¥i Vioo) (10)
Noticing that XX is the Gram matrix/Hessianvkerne- matrix K of kernel least square,

both formulas mse oo and errate |oo aretrividly kernelized and extend to kernd least
square. Formula (20) becomes g = r; / [1-( KK™);]. For the others, substitute XX by K.



