
Ensembles of Regularized Least Squares
Classifiers for high dimensional Problems

written by Kari Torkkola and Eugene Tuv

Theodor Mader
tmader@student.ethz.ch

ETH Zurich, Switzerland

2th February 2006

Overview

1 Regularized Least Squares Classifiers

2 Ensemble Classifiers

3 Random Forest

4 Experiments and Results

The Setting

Problem Definition

• What we have: set of m patterns, consisting of features and
labels (xi , yi)

m
i=1 ∈ {X n × {−1, 1}}

• What we want: find a function f : X n → {−1, 1} that
predicts the label for a new (never seen) pattern.

Some Fundamental Problems:

• What is the optimal f ?

• Feature space is usually very high dimensional

• Features might contain noise

Particular Setting

A linear decision function
For the space F of possible decision functions we coose all
functions of the form

f (x) =
n∑

j=1

ωjxj = ω • x

where xj denotes the j-th component of pattern x, and ω is a
weight vector.

The loss function
Our loss criterion will be a quadratic loss function:

L(f (x), y) = (y − f (x))2

and we also introduce a regularisation term ||ω||2

Particular Setting

A linear decision function
For the space F of possible decision functions we coose all
functions of the form

f (x) =
n∑

j=1

ωjxj = ω • x

where xj denotes the j-th component of pattern x, and ω is a
weight vector.

The loss function
Our loss criterion will be a quadratic loss function:

L(f (x), y) = (y − f (x))2

and we also introduce a regularisation term ||ω||2

Optimisation Problem (1/2)

This leads us to the optimisation problem: Find ω such that the
overall loss for all patterns xi

1

m

m∑
i=1

(ω • xi − yi)
2 − λ||ω||2

is minimal. Putting all Patterns xi into a Matrix X such that each
pattern corresponds to a row in X, and all labels into a vector y
lets us rewrite the equation:

||Xω − y||2 − λ||ω||2

Does this look familiar?

Ridge Regression!

Optimisation Problem (1/2)

This leads us to the optimisation problem: Find ω such that the
overall loss for all patterns xi

1

m

m∑
i=1

(ω • xi − yi)
2 − λ||ω||2

is minimal. Putting all Patterns xi into a Matrix X such that each
pattern corresponds to a row in X, and all labels into a vector y
lets us rewrite the equation:

||Xω − y||2 − λ||ω||2

Does this look familiar?
Ridge Regression!

Optimisation Problem (2/2)

ω = arg min
ω
||Xω − y||2 − λ||ω||2

Solution
By deriving w.r.t ω and setting the derivative to zero we can get
the solution of this problem:

ω = (XTX + λIn)
−1XTy

where In denotes the (n × n) Identity matrix. Note that
X+ := (XTX + λIn)−1XT is the Pseudoinverse of X.

Kernelization (1/3)

Room for improvement

This is a really simple approach, and in addition the classifier is a
linear function on the feature space. Since we know that Kernels
are cool, lets try to improve the method by using kernels!

Feature Transform
Idea: Take our patterns, transform them to some other space, and
do the training and classification there. Transform will be done by
a function

φ(x) : X n → ΦN

Define kernel function k(x, y) = φ(x) • φ(y)

Kernelization (1/3)

Room for improvement

This is a really simple approach, and in addition the classifier is a
linear function on the feature space. Since we know that Kernels
are cool, lets try to improve the method by using kernels!

Feature Transform
Idea: Take our patterns, transform them to some other space, and
do the training and classification there. Transform will be done by
a function

φ(x) : X n → ΦN

Define kernel function k(x, y) = φ(x) • φ(y)

Kernelization (2/3)

Restating our problem

Now our decision function looks like this:

f (x) = α • φ(x)

where α is a new weight vector in Φ-space of dim. (N × 1)

Inserting φ(x) into the solution

All we did was change the representation of x, so the optimisation
step for finding α is still the same:

α = (φ(X)Tφ(X) + λIn)
−1φ(X)Ty

Note that φ(X) is the transform of the whole data Matrix by φ

Kernelization (2/3)

Restating our problem

Now our decision function looks like this:

f (x) = α • φ(x)

where α is a new weight vector in Φ-space of dim. (N × 1)

Inserting φ(x) into the solution

All we did was change the representation of x, so the optimisation
step for finding α is still the same:

α = (φ(X)Tφ(X) + λIn)
−1φ(X)Ty

Note that φ(X) is the transform of the whole data Matrix by φ

Kernelization (3/3)

There is a theorem that tells us that for the pseudoinverse it holds

(φ(X)Tφ(X) + λIn)
−1φ(X)T = φ(X)T (φ(X)φ(X)T + λIm)−1

by applying this equality to the solution of the regression problem
we can find that:

f (x) = φ(x) • α

= φ(x)T (φ(X)Tφ(X) + λIn)−1φ(X)Ty

= φ(x)Tφ(X)T (φ(X)φ(X)T + λIm)−1y

= φ(x)Tφ(X)T (K + λIm)−1y︸ ︷︷ ︸
w

=
m∑

i=1
wik(x, xi)

All Transforms are now contained in Kernel functions!

Kernelization (3/3)

There is a theorem that tells us that for the pseudoinverse it holds

(φ(X)Tφ(X) + λIn)
−1φ(X)T = φ(X)T (φ(X)φ(X)T + λIm)−1

by applying this equality to the solution of the regression problem
we can find that:

f (x) = φ(x) • α

= φ(x)T (φ(X)Tφ(X) + λIn)−1φ(X)Ty

= φ(x)Tφ(X)T (φ(X)φ(X)T + λIm)−1y

= φ(x)Tφ(X)T (K + λIm)−1y︸ ︷︷ ︸
w

=
m∑

i=1
wik(x, xi)

All Transforms are now contained in Kernel functions!

Kernelization (3/3)

There is a theorem that tells us that for the pseudoinverse it holds

(φ(X)Tφ(X) + λIn)
−1φ(X)T = φ(X)T (φ(X)φ(X)T + λIm)−1

by applying this equality to the solution of the regression problem
we can find that:

f (x) = φ(x) • α

= φ(x)T (φ(X)Tφ(X) + λIn)−1φ(X)Ty

= φ(x)Tφ(X)T (φ(X)φ(X)T + λIm)−1y

= φ(x)Tφ(X)T (K + λIm)−1y︸ ︷︷ ︸
w

=
m∑

i=1
wik(x, xi)

All Transforms are now contained in Kernel functions!

Kernelization (3/3)

There is a theorem that tells us that for the pseudoinverse it holds

(φ(X)Tφ(X) + λIn)
−1φ(X)T = φ(X)T (φ(X)φ(X)T + λIm)−1

by applying this equality to the solution of the regression problem
we can find that:

f (x) = φ(x) • α

= φ(x)T (φ(X)Tφ(X) + λIn)−1φ(X)Ty

= φ(x)Tφ(X)T (φ(X)φ(X)T + λIm)−1y

= φ(x)Tφ(X)T (K + λIm)−1y︸ ︷︷ ︸
w

=
m∑

i=1
wik(x, xi)

All Transforms are now contained in Kernel functions!

Kernelization (3/3)

There is a theorem that tells us that for the pseudoinverse it holds

(φ(X)Tφ(X) + λIn)
−1φ(X)T = φ(X)T (φ(X)φ(X)T + λIm)−1

by applying this equality to the solution of the regression problem
we can find that:

f (x) = φ(x) • α

= φ(x)T (φ(X)Tφ(X) + λIn)−1φ(X)Ty

= φ(x)Tφ(X)T (φ(X)φ(X)T + λIm)−1y

= φ(x)Tφ(X)T (K + λIm)−1y︸ ︷︷ ︸
w

=
m∑

i=1
wik(x, xi)

All Transforms are now contained in Kernel functions!

Summary

So we have seen that we can rewrite the decision function in the
input space as

f (x) =
m∑

i=1

wik(x, xi)

and we can find the weights by solving the linear equation

w = (K + λIm)−1y

K is the Kernel Matrix defined by Kij = k(xi , xj) for all training
patterns xi and xj . Note that w is of dimension m.

Ensemble Classifiers (1/3)

Idea
Instead of creating one single highly sophisticated classifier, let’s
take many simple classifiers (weak learners), and do majority
voting.

Formalization
We take a number m of simple classifiers fi (x), and create a
decision function

f (x) = sgn

(
m∑

i=1

fi (x)

)

Ensemble Classifiers (2/3)

Bias - Variance Tradeoff
We have seen in the last lecture that the expected classification
error can be decomposed into

ED [f (x,D)− y]2 = [ED f (x,D)− y]2︸ ︷︷ ︸
Bias2

+ ED [f (x,D)− ED f (x,D)]2︸ ︷︷ ︸
Variance

where ED denotes the expectation over the training set D.

Variance Reduction
We note that our ensemble classifier in fact averages over m weak
learners.
⇒ the resulting classifier will have less variance

⇒ ensemble classifiers reduce variance!

Ensemble Classifiers (2/3)

Bias - Variance Tradeoff
We have seen in the last lecture that the expected classification
error can be decomposed into

ED [f (x,D)− y]2 = [ED f (x,D)− y]2︸ ︷︷ ︸
Bias2

+ ED [f (x,D)− ED f (x,D)]2︸ ︷︷ ︸
Variance

where ED denotes the expectation over the training set D.

Variance Reduction
We note that our ensemble classifier in fact averages over m weak
learners.
⇒ the resulting classifier will have less variance

⇒ ensemble classifiers reduce variance!

Ensemble Classifiers (2/3)

Bias - Variance Tradeoff
We have seen in the last lecture that the expected classification
error can be decomposed into

ED [f (x,D)− y]2 = [ED f (x,D)− y]2︸ ︷︷ ︸
Bias2

+ ED [f (x,D)− ED f (x,D)]2︸ ︷︷ ︸
Variance

where ED denotes the expectation over the training set D.

Variance Reduction
We note that our ensemble classifier in fact averages over m weak
learners.
⇒ the resulting classifier will have less variance
⇒ ensemble classifiers reduce variance!

Ensemble Classifiers (3/3)

Bias
We want the expected classification error as low as possible.
Variance is already taken care of by the averaging process.
⇒ We have to look for weak learners with low bias

How to reduce bias
The bias-variance tradeoff also holds for single classifiers. So we
can reduce bias by increasing variance.
⇒ Overfit the individual classifiers!

Ensemble Classifiers (3/3)

Bias
We want the expected classification error as low as possible.
Variance is already taken care of by the averaging process.
⇒ We have to look for weak learners with low bias

How to reduce bias
The bias-variance tradeoff also holds for single classifiers. So we
can reduce bias by increasing variance.
⇒ Overfit the individual classifiers!

Feature Selection (1/2)

Contest Data contains large number of features. Many
non-informative and even garbage features. Use feature selection
technique to make classification faster and better.
The authors used random forest to calculate a relevance index for
the features.

Random Forest
RF creates a number NT of decision trees. At each node of the
decision tree a random subset of features is selected, and out of
this subset the variable that reduces entropy most is selected as
splitter.

Variable Selection with RF

Relevance Index
At a given tree T for each variable we sum up entropy reduction at
each node where the data was split according to this variable.

M(xi ,T) =
∑

t∈T |xi is splitter variable at node t

∆I (xi , t)

Variable relevance can then be defined as the average entropy
reduction over all trees T .

M(xi) =
1

NT

NT∑
k=1

M(xi ,Tk)

Experiments (1/3))

Feature Selection
The authors used the relevance index created by RF to look for
cutoff points, i.e. sudden drops in the relevance of variables, to get
candidates for split into relevant/non relevant variables. The
optimal cutoff point was selected by cross validation (CV).

Figure: Relevance of top 33 features of Madelon

Experiments (2/3)

Preprocessing and Feature Selection

With some datasets also standardization and variable weighting
improved performance.

306 Kari Torkkola and Eugene Tuv

Table 11.1. Experimentation with the number of selected variables. Ten-fold cross-
valdation errors on training data using a number of best ranked variables. See text
for Arcene and Dexter.

Data set Selection All variables

11 19 25 500

Madelon 0.1295 0.1071 0.1497 0.254

49 109 432 20000

Dexter 0.0767 0.0738 0.033 0.324

13 87 434 10000

Arcene 0.267 0.0406 0.0430 0.1307

44 156 307 5000

Gisette 0.0453 0.0247 0.0218 -

284 1000000

Dorothea 0.0280 -

Table 11.2. Variable selection, standardization, and variable weighting decisions.

Data Original Selected Selection Stand- Weight-

set variables variables method ardize? ing?

Madelon 500 19 RF yes no

Dexter 20000 500 MMI yes by MI

Arcene 10000 10000 none no no

Gisette 5000 307 RF no no

Dorothea 100000 284 RF no no

error but was the smallest when all variables were used. Arcene is evidently
such a small data set that variable selection and classifier training both us-
ing the 100 training samples, will overfit. The second exception is Dexter,
which gave the best results using 500 variables ranked by maximum mutual
information with the class labels (20), (Chapter 6).

At this point we also studied preprocessing. In every case, the mean is
subtracted first. In addition, we experimented with 1) standardization of indi-
vidual variables, and 2) weighting variables by their importance. Due to lack of
space these experiments are not tabulated, but the decisions are summarized
in table 11.2.

Once the variable set and the preprocessing is fixed, the next task is to
optimize the classifier parameters.

Figure: Optimal Preprocessing settings found by crossvalidation

Experiments (3/3))

ensemble vs. single classifier

The authors were also interested in the difference between an
ensemble of regularized least squares classifiers and one single
RLSC. For that purpose they trained both versions and compared
errorrates.

Ensemble of RLSCs

Random Forest Single RLSC

RLSC RLSC RLSC ... Random Forest

Figure: Experimental Setup

Particular Settings

• Gaussian Kernels with spherical covariance matrices were
chosen, the optimal kernel width σ2 was found by CV.

• The regularisation parameter was also found by CV for the
single RLSC, for the ensemble it was kept very small in order
to allow overfitting.

• The ensemble size didn’t really make great differences as long
as it was ”reasonably large” (around 200)

• The individual RLSC in the ensemble were trained with a
random subset of the training data, chosen without
replacement, since duplicates only result in a duplicate kernel
function in the solution.

CV error for ten-fold CV
11 Ensembles of Regularized Least Squares Classifiers 309

!Inf !8 !7 !6 !5 !4 !3 !2 !1 0

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.011111

0.016667

0.033333

 0.1

 0.2

 0.5

 1

 2

 5

Fig. 11.3. Cross-validation experimentation in order to find the optimal combi-
nation of kernel width and regularization parameter for the Madelon data set. The
vertical axis is the 10-fold cross-validation error rate on training data, the horizontal
axis is log10(γ), and each curve corresponds to a specific kernel width. The legend
displays the multiplier to d2

av = 37.5. A single RLSC is denoted by solid lines, and
dashed lines denote an ensemble of 200 RLSCs, each trained using a random sample
of 40% of the training data. The color coding remains the same.

0.011 0.017 0.033 0.1 0.2

0.095

0.1

0.105

0.11

0.115

0.12

Kernel width relative to d
av

2

E
rr

or
 r

at
e

Single RLSC
Ensemble of RLSCs

Fig. 11.4. Dashed line: Cross-validation error of a single RLSC as a function of
the kernel width. The solid line plots the same for an ensemble. The regularization
parameter was kept fixed.

limit to N (even with current computers) which makes solving the full system
if not impossible, at least very inconvenient. Solving instead 200 systems of
size N/10 can be much more feasible if O(N3) passes some resource limit but
O((N/10)3) does not. A further advantage of ensembles is that they can be
easily parallelized.

We present classification error rates both for CV and for the validation set
in Table 11.3. Corresponding ensemble parameters are shown in Table 11.4.
Even though there is no difference in CV/validation error rates between using
a single RLSC or an ensemble of LSCs, we decided to make our entry to the
challenge using ensembles. This was motivated by a combination of two facts,
1) small sample sizes in some of the data sets, and 2) because of the reduced
sensitivity of an ensemble to parameter choices. Results of the challenge entry

Figure: Experimental Setup

The horizontal axis corresponds to log10(λ), the vertical axis is the
CV-error. Each curve corresponds to a particular kernel width.
Dashed curves denote the ensemble, solid curves the single RLSC.

Ensemble vs. Single RLSC

Validation Error

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

Madelon Dexter Arcene Gisette Dorothea

Single RLSC

Ensemble

It can be seen that there are no significant differences between the
ensemble and the single classifier on the validation set.

NIPS 2003 Challenge: Results

For the NIPS 2003 Challenge the authors submitted the ensemble
classifier, because the ensemble is more robust (less sensitive to
parameter choices).

Comparison with contest Winner

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

Overall Arcene Dexter Dorothea Gisette Madelon

BER Submission

BER Contest Winner

Conclusion

• The experiments show empirically that aggregation of multiple
(non regularized) RLSC classifiers delivers the same results as
one regularized RLSC

• So bagging unstable classifiers (classifiers with high variance)
makes them stable.

• Advantage: ensembles seem to be more robust w.r.t.
hyperparameter selection.

• Very simple but powerful method

• Can be easily parallelized

Remarks

The Quest for low Bias
Weak learners used for ensemble classifiers should have low bias as
pointed out before. However the model that the authors propose
implicitly introduces bias at two places

• Choice of the loss function: Quadratic Loss penalizes outliers
more than points close to the decision boundary.

• Regularisation

Feature Selection vs. good Classifier

The authors combine Random Forest and an ensemble of RLSC.
Results are very good, but it is not clear if this is due to the
classifier or due to the feature selection process.

Remarks

The Quest for low Bias
Weak learners used for ensemble classifiers should have low bias as
pointed out before. However the model that the authors propose
implicitly introduces bias at two places

• Choice of the loss function: Quadratic Loss penalizes outliers
more than points close to the decision boundary.

• Regularisation

Feature Selection vs. good Classifier

The authors combine Random Forest and an ensemble of RLSC.
Results are very good, but it is not clear if this is due to the
classifier or due to the feature selection process.

	Regularized Least Squares Classifiers
	Ensemble Classifiers
	Random Forest
	Experiments and Results

