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We implemented two versions of Naïve Bayesian classifiers, one for binary inputs and 
one for continuous inputs. Both make independence assumptions between the input 
variables/features. The binary version uses frequency counts to estimate probabilities. 
The continuous version assumes a Gaussian distribution of the samples in each class. 
 
Naïve Bayes for binary inputs 
 
We treat here the two-class case with binary 0/1 inputs and ±1 target values. 
 
Bayes classifiers follow the rule: classify pattern x in class 1 if 
P(target=1 | x) > P(target=-1 | x)       (1) 
and in the other class otherwise. 
 
According to Bayes’ rule 
P(target=t | x) = P(x | target=t) P(target=t) / P(x) 
with t=±1. 
Because P(x) does not affect the result, (1) is also equivalent to classifying pattern x in 
class 1 if 
P(x | target=1) P(target=1) > P(x | target=-1) P(target=-1)     (2) 
and in the other class otherwise. 
 
The independence assumptions allow us to write: 

P(x | target=t) = Π i P(xi | target=t)       (3) 
 
Each factor can be estimated from the training data as frequency counts: 
P(xi =1 | target=1) ≅ f11i= fraction of times feature i is 1 in training ex. from class 1. 
P(xi =0 | target=1) ≅ f01i=fraction of times feature i is 0 in training ex. from class 1. 
P(xi =1 | target=-1) ≅ f12i=fraction of times feature i is 1 in training ex. from class 2. 
P(xi =0 | target=-1) ≅ f02i=fraction of times feature i is 0 in training ex. from class 2. 
 
By taking the log of (2) and using (3) we can create a linear discriminant function: 
Classify pattern x in class 1 if 
F(x) > 0      
and in the other class otherwise. 

F(x)= Σi log [P(xi | target=1) / P(xi | target=-1)] + b     (4) 
with b= log P(target=1) - logP(target=-1). 
log P(target=1) ≅ f1 =fraction of positive examples in the training data. 
log P(target=-1) ≅ f2 =fraction of negative examples in the training data.. 
 
We need to switch values depending on whether the actual feature observed is 0 or 1, 
therefore (4) becomes: 



F(x)= Σi (xi log [P(xi =1|target=1) / P(xi =1|target=-1)] +  
(1- xi ) log [P(xi =0|target=1) / P(xi =0| target=-1)] )+  b  

or simply: 

F(x)= Σi (xi log (f11i/f12i) + (1- xi ) log (f01i/f02i) )+ log(f1/ f2) 
 
Thus: 

F(x)= Σi wi xi + B 
where 
wi = log (f11i/f12i) - log (f01i/f02i) 

B = Σi log (f01i/f02i) + log(f1/ f2). 
 
Notes: 

- By playing on the class priors P(target=1) and P(target=-1), one varies the 
tradeoff precision recall by changing the bias. 

- The method can also be used for feature ranking (using the absolute values of wi 
as ranking criterion.  

- The method can be trivially extended to the multi-class case and the categorical 
variable case. For the continuous case, one can consider extending it with T, 
Hastie’s trick. 

- The frequency estimations can make use of  a prior. If fi  = ni / n, we replace the 
frequency fi by fi’ = ( n fi + mean(fi) ) / (n + 1). Therefore, even if we have very 
few observations of positive features, we never get fi = 0. 

 
Gaussian classifier 
 
We implemented a Naïve Bayes classifier for continuous that makes the assumption that 
the class conditional probabilities are Gaussian distributed. With the feature 
independence assumption, one gets the density: 

P(x|class1) = C Πi exp-0.5 (xi –µ1i)2/σi
2      

where C is a constant that is the same for all classes, µ1i is the mean value of feature i for 
the examples of class 1, and  is the “pooled” within class standard deviation of feature i 
(essentially the stdev of examples of class 1 averaged with the stdev of examples of class 
2). We have a similar expression for class 2. 
 
A good discriminant function F(x) should be positive if x is more likely to belong to class 
1 and negative otherwise, that is if:  
P(class1 | x) > P(class2 | x) 
or, after applying Bayes rule: 
P(x | class1) P(class1) / P(x) > P(x | class2) P(class2) / P(x) 
or equivalently: 
log P(x | class1) – log P(x | class2) + log P(class1) - log P(class2) > 0 
This leads us to choose the following discriminant function: 
 



F(x)= log P(x | class1) – log P(x | class2) + log P(class1) - log P(class2) 
 
Using (1), we obtain: 

F(x)= -0.5 Σi (xi –µ1i)2/σi
2 +0.5 Σi (xi –µ2i)2/σi

2 + log P(class1)/P(class2) 
 
This can be rewritten as a linear discriminant function: 

F(x)= Σi wi xi + b 
 
with  
 
wi  = 0.5 (µ1i –µ2i)/σi

2   (1) 

b = Σi 0.5 (µ2i
2 –µ1i

2) /σi
2 + log P(class1)/P(class2) 

 
Mean and standard deviation are estimated in a standard way using training data. 
P(class1) and P(class2) are the class priors that can be estimated by frequency counts n1/n 
and n2/n, where n1 and n2 are the number of examples in class 1 and 2 and n is the total 
number of examples. 
 
For feature selection, the ranking is done with the absolute value of the weights. 
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