Combining SVMs with Various Feature Selection Strategies

Yi-Wei Chen and Chih-Jen Lin Department of Computer Science, National Taiwan University, Taipei 106, Taiwan

SVM Idea

- Map features into a higher dimensional space
- Find separating hyperplane with maximum margin
- Amounts to solving the quadratic optimization problem:

 $\begin{array}{l} {\mathop{\min }\limits_{\left[{{\mathbf{w}},{\mathbf{b}},\;{\mathbf{\eta }}} \right]} 0.5 * {\mathbf{w}}^{\mathsf{T}} {\mathbf{w}} + {\mathbf{C}} * ? \; ?_{\mathsf{i}} \\ subject \; to \quad {y_{\mathsf{k}}} * ({{\mathbf{w}}^{\mathsf{T}}} * {\mathsf{F}} ({x_{\mathsf{k}}}) + {\mathsf{b}}) = 1 - ?_{\mathsf{k}} \\ and \quad {?_{\mathsf{k}}} = 0 \end{array}$

Finding the parameters

- Parameter ? of the RBF kernel
- Parameter C of the SVC
- Simple heuristic:
 - Create grid with pairs of (C, ?) $\log_2 C$ in {-5, -3, ..., 15} \log_2 ? in {-15, -13, ..., 3}
- Perform 5-fold CV on each (C, ?)-pair
- Choose (C, ?)-pair with smallest CV-BER

Feature Selection Strategies

- · 4 strategies were tried:
 - No selection (SVM)
 - F-score (F-score + SVM)
 - F-score + random forest (F-score + RF + SVM)
 - Random forest + radius-bound SVM (RF + RM -SVM)

Random Forest

- Can be used for classification as well as feature importance
- Will be covered later in the lecture
- Suitable for rather small feature sets
- They found, that random-forest feature selection kept **all** the features obtained from the F-score selection process

Radius Margin Bound SVM

- RBF kernel with feature-wise scaling: $k(x, x') = exp(??_i^* (x_i - x'_i)^2)$
- This is rather time-consuming and only applicable to small feature sets
- Thus, they only apply it only to MADELON (500 features)
- But the performance is not significantly better than a standard SVM (next slide)

able 12.1. Compar validation sets (in generate our final	ison of dif percentag submissio	ferent met ;c); bold-fr m	hods during ced entries	the deve correspon	lopment p id to appi
Datase	t ARCENE	E DEXTER	DOROTH	EA GISET	TE MADE
SVA	1 13.3	1 11.67	33.	98 2	.10
F+SVM	1 21.4	3 8.00	21.	38 1.	.80
F+RF+SVM	1 21.43	3 8.00	12.	51 1	.80
RF+RM-SVM	۰ -	-		-	(77)
able 12.3. F-score	threshold -	and the nu	mber of fea	tures selec	ted in F+
Distance -	0.1	0.015	0.05	0.01	0.005
k' neoro threehold	10 a l	0.010	0.00	0.01	0.000
F-score threshold #features selected	661	209	445	913	13

		п	~				<u>ہ</u>	_	I	4~	
U	າສ		er	סר	le	F	٢e	S	uı	τs	
					, -			-			
Tab	e 12	4. NI	PS 20	03 ch	alleng	te rest	lts o	n Dec	embe	r 1 st	
Dec. 1 st	Ou	r best	challe	nge e	atry	The	vinnir	ig chal	llenge	entry	
Dataset	Score	BER	AUC	Feat	Probe	Score	BER	AUC	Feat	Probe	Test
OVERALL	52.00	9.31	90.69	24.9	12.0	88.00	6.84	97.22	80.3	47.8	0.4
ARCENE	74.55	15.27	84.73	100.0	30.0	98.18	13.30	93.48	100.0	30.0	0
DEXTER	0.00	6.50	93.50	1.0	10.5	96.36	3.90	99.01	1.5	12.9	- 1
DOROTHEA	-3.64	16.82	83.18	0.5	2.7	98.18	8.54	95.92	100.0	50.0	1
GISETTE	98.18	1.37	98.63	18.3	0.0	98.18	1.37	98.63	18.3	0.0	0
MADELON	90.91	6.61	93.39	4.8	16.7	100.00	7.17	96.95	1.6	0.0	0
1000 0000											
Tabl	e 12.5	5. NI	PS 20	03 ch	alleng	te resu	lts o	a Dec	embe	r 8 ^{cn}	
Dec. 8 th	Ou	r best	challe	nge ei	ntry	The	vinnir	ig chal	llenge	entry	
Dataset	Score	BER	AUC	Feat	Probe	Score	BER	AUC	Feat	Probe	Test
OVERALL	49.14	7.91	91.45	24.9	9.9	88.00	6.84	97.22	80.3	47.8	0.4
ARCENE	68.57	10.73	90.63	100.0	30.0	94.29	11.86	95.47	10.7	1.0	0
DEXTER	22.86	5.35	96.86	1.2	2.9	100.00	3.30	96.70	18.6	42.1	1
OOROTHEA	8.57	15.61	77.56	0.2	0.0	97.14	8.61	95.92	100.0	50.0	1
GISETTE	97.14	1.35	98.71	18.3	0.0	97.14	1.35	98.71	18.3	0.0	0
MADELON	71.49	7.11	92.89	3.2	0.0	04.20	7.11	96.95	1.6	0.0	1

Their Conclusion

- Pure SVM without feature selection works well on GISETTE and ARCENE
- On MADELON the winning team used a Bayesian SVM, which gives very similar (but better) results
- They tried to determine, which feature selection methods work best with SVMs, but broader investigation on different data sets is needed

Combining a Filter Method with SVMs

Thomas Navin Lal, Olivier Chapelle and Bernhard Schölkopf Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany

General approach

- For ARCENE, DEXTER, GISETTE and MADELON a hard-margin SVM is trained
- For DOROTHEA (which is unbalanced) a soft-margin SVM is trained
- For DOROTHEA, GISETTE and MADELON a gaussian kernel is used
- For ARCENE and DEXTER a linear kernel is used.

Finding the parameters

- C is found by 20-fold cross-validation (for the soft-margin SVM)
- The gaussian kernel parameter s is found by a heuristic approach:
 - For each k, let t_k be the distance of x_k to the set formed by all points of the other class
 - s is then set to the mean of the \boldsymbol{t}_k values

Number of features

- For different numbers of best features N, a SVM is trained using 10-fold cross-validation
- The N with lowest average test-error is chosen

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	 Martin Der, MAT 2000 - Landmart vorder for des Bernarden of State	Mark 2012. HET DES colleges strates for the biological of " for the property of the strategy of the biological of the for- tion of the strategy of the strategy of the strategy of the strategy means the strategy of the strategy of the strategy of the strategy means of the strategy of the strategy of the strategy of the strategy of the strategy of the strategy of the strategy of the strategy of the strategy of the strategy of the strategy of the strategy of the strategy of the strategy of the strategy of the biological strategy of the strategy of the strategy of the biological strategy of the strategy of the strategy of the biological strategy of the strategy of the strategy of the biological strategy of the strategy of the strategy of the biological strategy of the strategy of the strategy of the biological strategy of the strategy of the strategy of the biological strategy of the strategy of the strategy of the biological strategy of the strategy of the strategy of the biological strategy of the strategy of the strategy of the biological strategy of the strategy of the strategy of the biological strategy of the strategy of the strategy of the biological strategy of the strategy of the strategy of the biological strategy of the strategy of the strategy of the biological strategy of the strategy of the strategy of the strategy of the biological strategy of the strategy of the strategy of the strategy of the biological strategy of the strategy of the strategy of the strategy of the biological strategy of the strategy of the strategy of the strategy of the biological strategy of the strategy of the strategy of the strategy of the strategy of the strategy of the strategy of the strategy of the strategy of the strategy of the strategy of the strategy of the strategy of the strat
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Der C ² , eine bei aufstage eine. Wei einste Kallenge eine Stessen fürst DMI 107 Frag Fuller inste Mill 107 Auf 107 Beitrigen (1998) Miller inste Miller auf 107 Auf 108 Beitrigen (1998) Miller inste Miller auf 107 Auf 108 Auf 108 Beitrigen (1998) Miller auf 108 Auf 108 Auf 108 Auf 108 Beitrigen (1998) Miller auf 108 Auf 108 Auf 108 Auf 108 Beitrigen (1998) Miller auf 108 Auf 108 Auf 108 Auf 108 Beitrigen (1998) Miller auf 108 Auf 108 Auf 108 Auf 108 Beitrigen (1998) Auf 108 Auf 108 Auf 108 Auf 108 Beitrigen (1998) Auf 108 Auf 108 Auf 108 Auf 108 Beitrigen (1998) Auf 108 Auf 108 Auf 108 Auf 108 Auf 108 Beitrigen (1998) Auf 108 Auf 108 Auf 108 Auf 108 Auf 108 Beitrigen (1998) Auf 108	Dec 1 ⁴⁵ - Sing the statistics with the same distance on boundary of the DM (10) from their sizes that the DM (10) for the Single statistics of the DM (10) for the Single statistics of the same distance of the Single statistics of the Single statistics in the Single statistics of the Single statistics of the Single statistics of the Single statistics of the Single statistics in the Single statistics of the Single statistics of the Single statistics of the Single statistics of the Single statistics in the Single statistics of the Single Single statistics of the Single statistics of the Single statistics of the Single statistics of the Single statistics of the Single Single statistics of the Single statistics of the Single Single statistics of the Single statistics of the Single Single statistics of the Single Single statistics in the Single Single Single statistics of the Single Single statistics in the Single Single Single statistics of the Single Single statistics in the Single Single Single statistics of the Single Single statistics in the Single Single Single statistics of the Single
There are proved as more than the	have set if they provide here in the last the contrast of the	have been well with the probability of the two the second of the second of the second of the second second of the second

Comparison

- · Both teams use SVM classifiers
- The difference in performance must be related to finding the hyperparameters
- First group searches for both parameters together (parameter grid)
- Second group does an independant search for each parameter
- Choosing the number of best features to use (with F-score feature selection) is done in a similar way (5- and 10-fold CV)

My conclusion

- The two teams did exactly what we did when experimenting with GISETTE:
 - Trying to find optimal parameters for the model, which would lead to the smallest error
- Often, (simple) heuristics are used for this task
- An idea would be to use more sophisticated heuristic methods to do a more structured search in the parameter space