Lecture 1: Introduction

Isabelle Guyon
guyoni@inf.ethz.ch

Class Organization

http://clopinet.com/isabelle/Projects/ETH/
Class Schedule

- **Thursday 10:00AM-12:00AM, CAB G 59:** Lecture.
- **Thursday 12:00AM-13:00PM, CAB G 59:** Exercises.
- **Tuesday 10:00AM-12:00AM, CAB G 82.2:** Office hours.
- **Tuesday afternoon:** turn in the homework (homework turned in late will not be checked). Teams of 2 permitted.

Class Organization

- **Every week:** list of questions.
- **Every week:** homework.
- **Alternating:**
 - lectures by the instructors (I. Guyon primarily and A. Eliseeff guest instructor)
 - seminars given by the students on selected papers.
Textbook

login: fextract
password: ws0506

Requirements and Grading

The class is worth 5 units:

- Submit one valid entry in the feature selection challenge http://www.nipsfsc.ecs.soton.ac.uk/ meeting some criteria of quality.
- Present a seminar on one of the papers proposed.
- Final oral exam *(Monday, February 27)*: Present a poster with your results. Questions.

Teams of 2 permitted.
Choose your paper

- Look at: http://clopinet.com/isabelle/Projects/ETH/
- Email to: guyoni@inf.ethz.ch
- First come first serve!

Course Overview

- Fundamentals:
 - Learning machines
 - Applied statistics
 - Signal/image processing and filtering.
- Feature extraction: Feature extraction = feature construction + feature selection
- Applications:
 - Biology and medicine
 - Text and image processing.
Homework Overview

• Make entries in the feature selection challenge (5 datasets.)

• In the process, learn how to:
 - write a proposal
 - write a conference paper or a report
 - write claims for a patent
 - write a paper review
 - make a presentation (of a paper of the book)
 - make a poster
 - present a poster.

Feature Extraction Applications
Feature Extraction

Feature extraction = feature construction + feature selection

- Methods for training learning machines with millions of low level features.
- Identifying relevant features leads to better, faster, and easier to understand learning machines.

Applications
Leukemia Diagnosis

38 training ex. (27 ALL, 11 AML)
34 test ex. (20 ALL, 14 AML).

Golub et al, Science
Vol 286:15 Oct. 1999

\[
\{y_k\}, \ k=1\ldots\text{num}
\]
\[
\{x_k\}, \ k=1\ldots\text{num}
\]

Top 25 positively correlated features (genes)

Top 25 negatively correlated features (genes)

Prostate Cancer Genes

Elisseeff-Weston, 2001
- EVMS prostate cancer data: 326 samples (167 cancer, 159 control).
- Preprocessing including m/z 200-10000, baseline removal.
- Split in 3 equal parts and make 3 experiments 2/3 train 1/3 test.
- Non-linear feature selection methods win: 5% error with 100 features, 8% with 7 features.

Instrument characterization and data quality control
In collaboration with Predicant Biosciences
QSAR: Drug Screening

Binding to Thrombin (DuPont Pharmaceuticals)

- 2543 compounds tested for their ability to bind to a target site on thrombin, a key receptor in blood clotting; 192 “active” (bind well); the rest “inactive”. Training set (1909 compounds) more depleted in active compounds.

- 139,351 binary features, which describe three-dimensional properties of the molecule.

Weston et al, Bioinformatics, 2002

Text Filtering

Reuters: 21578 news wire, 114 semantic categories.

20 newsgroups: 19997 articles, 20 categories.

WebKB: 8282 web pages, 7 categories.

Bag-of-words: >100000 features.

Top 3 words of some categories:

- **Alt.atheism**: atheism, atheists, morality
- **Comp.graphics**: image, jpeg, graphics
- **Sci.space**: space, nasa, orbit
- **Soc.religion.christian**: god, church, sin
- **Talk.politics.mideast**: israel, armenian, turkish
- **Talk.religion.misc**: jesus, god, jehovah

Bekkerman et al, JMLR, 2003
Face Recognition

- Male/female classification
- 1450 images (1000 train, 450 test), 5100 features (images 60x85 pixels)

Relief:

Simba:

Navot-Bachrach-Tishby, ICML 2004

Pattern Specific features
Risk Minimization

- **Learning problem**: find the best function \(f(x; \alpha) \) minimizing the risk functional

\[
R[f] = \int L(f(x; \alpha), y) \, dP(x, y)
\]

- **Examples are given**:
 \((x_1, y_1), (x_2, y_2), \ldots, (x_m, y_m)\)
Loss Functions

\[L(y, f(x)) \]

- Decision boundary
- Margin
- Well classified
- Missclassified

\[z = y f(x) \]

- 0/1 loss
- Square loss: \((1-z)^2 \)
- SVC loss: \(\max(0, 1-z) \)
- Logistic loss: \(\log(1+e^{-z}) \)
- Adaboost loss: \(e^{-z} \)

Approximations of \(R[f] \)

\[R[f] = \int L(f(x; \alpha), y) \ dP(x, y) \]

- Empirical risk: \(R_{emp}[f] = \sum_i L(f(x_i; \alpha), y_i) \)
- Guaranteed risk:
 \[\text{Proba}(R[f] > R_{emp}[f] + \varepsilon) < \delta \]
- Penalized/regularized risk:
 \[R_{reg}[f] = R_{emp}[f] + \Omega[f] \]
Bayesian Decision Making

• Bayes formula:
 \[P(a,b) = P(a|b) P(b) = P(b|a) P(a) \]

• Bayes Optimum Classifier (BOC):

 Class + if \(P(y=1|x) > P(y=-1|x) \)

 Class - otherwise

• Equivalent formulations:

 \(P(x|y=1)P(y=1) > P(x|y=-1)P(y=-1) \)

 \(P(x, y=1) > P(x, y=-1) \)

Approximations of BOC

• Discriminant function:

 Class + if \(f(x) > 0 \)

 Class - otherwise

• Linear discriminant:

 \(f(x) = w \cdot x + b \)

• \(f(x) \) may approximate

 \(P(y=1|x) - P(y=-1|x) \) \(\rightarrow \) square loss

 \(\log(P(y=1|x) / P(y=-1|x)) \) \(\rightarrow \) logistic loss
Maximum Likelihood

- **Likelihood**: probability of the data given the model.

\[
P(D \mid f) = P(\{(x_i, y_i)\} \mid f)
\]

- **Maximum Likelihood (ML)**: find the model that fits best the data.

ML = ERM

- **ML**:
 \[f = \text{argmax} \; P(D \mid f)\]
 \[= \text{argmin} \; -\log P(D \mid f)\]
 Negative log likelihood

\[- \log P(D \mid f) = - \log P(\{(x_i, y_i)\} \mid f)\]

\[= \sum_i - \log P((x_i, y_i) \mid f)\]

\[= \sum_i L(f(x_i), y_i) \quad \text{loss function}\]

\[= R[f] \quad \text{Empirical risk}\]

- **ERM**:
 \[f = \text{argmin} \; R[f]\]
Example: Logistic Loss

- Functional margin:
 \[z = y_i f(x_i) \]
- Link function:
 \[P((x_i, y_i) \mid f) = \psi(z) \]
- Logistic link:
 \[\psi(z) = 1/(1+e^{-z}) \]
- Logistic loss:
 \[
 L(f(x_i), y_i) = -\log P((x_i, y_i) \mid f) \\
 = \log (1+e^{-z})
 \]

Priors and Bayesian Learning

- Double random process:
 - Draw a target function \(f \) in a family of functions \(\{f\} \)
 - Draw the data pairs \((x_i, y_i = f(x_i) + \text{noise})\)
- The distribution of \(f \) is called the “prior” \(P(f) \).
- Our revised opinion about \(f \) once we see the data is the “posterior” \(P(f|D) \).
- Bayesian “learning”:
 \[
 P(y|x,D) \propto \int P(y|x,D,f) \, dP(f|D)
 \]
- MAP:
 \[
 f = \text{argmax } P(f|D) \\
 = \text{argmax } P(D|f) \, P(f)
 \]
MAP = RRM

• Maximum A Posteriori (MAP):
 \[f = \text{argmax} \ P(D|f) \ P(f) \]
 \[= \text{argmin} -\log P(D|f) - \log P(f) \]

 Negative log likelihood = Empirical risk \(R[f] \)

 Negative log prior = Regularizer \(\Omega[f] \)

• Regularized Risk Minimization (RRM):
 \[f = \text{argmin} \ R[f] + \Omega[f] \]

Example: Gaussian Prior

• Linear model:
 \[f(x) = w \cdot x \]

• Gaussian prior:
 \[P(f) = \exp -\frac{||w||^2}{\sigma^2} \]

• Regularizer:
 \[\Omega[f] = -\log P(f) = \lambda \ ||w||^2 \]
Structural Risk Minimization

- Nested subsets of models, increasing complexity/capacity:
 \[S_1 \subset S_2 \subset \ldots S_N \]
- Example, rank with \(||w||^2 \)
 \[S_k = \{ w \mid ||w||^2 < A_k \}, A_1 < A_2 < \ldots < A_k \]
- Minimization under constraint:
 \[\min R_{\text{emp}}[f] \quad \text{s.t.} \quad ||w||^2 < A_k \]
- Lagrangian:
 \[R_{\text{reg}}[f] = R_{\text{emp}}[f] + \lambda ||w||^2 \]
- LOO\(_{\text{SVM}}\) < \(4 \rho^2 ||w||^2 \)

Minimum Description Length

- MDL: minimize the length of the “message”.
- Two part code: transmit the model and the residual.
- \(f = \arg\min -\log_2 P(D|f) - \log_2 P(f) \)

Residual: length of the shortest code to encode the data given the model

Length of the shortest code to encode the model (model complexity)
Bias-variance tradeoff

- For the square loss:
 \[
 E_D(f(x) - y)^2 = (E_D f(x) - y)^2 + E_D (f(x) - E_D f(x))^2
 \]

 - **Expected value of the empirical risk over datasets of the same size**
 - **Bias\(^2\)**
 - **Variance**

Some Learning Machines

Next week...
- Linear discriminant (Naïve Bayes, least square)
- Neural networks
- Kernel methods (Support Vector Machines, kernel least square)
- Tree classifiers
Practical Work

Homework 1: Data and Code

1) Download the 5 datasets of the feature selection challenge from: http://clopinet.com/isabelle/Projects/NIPS2003/ or http://www.nipsfsc.ecs.soton.ac.uk/datasets/ and put all 5 subdirectories ARCENE, DEXTER, DOROTHEA, GISETTE, and MADELON in one directory <data_dir>.

2) Download the Matlab package CLOP from http://www.modelselect.inf.ethz.ch/models.php or http://clopinet.com/isabelle/Projects/modelselect/Clop.zip We will call the directory where it ends up <code_dir>.
Homework 1: Installation

3) Windows users: nothing special.
 Linux users: build libSVM => see instructions in
 the directory
 <code_dir>/challenge_objects/packages/libsvm-mat-2.8-1.

4) Download the sample code from:
 http://clopinet.com/isabelle/Projects/ETH/homework1.zip
 Run the sample code main.m. Troubleshooting: try
 'Prepro+naiveBayes'; try 'zarbi'.

5) Create your own chain object.

Homework 1: Exercise

6) Write your own preprocessing learning object, imitating
 the examples in
 <my_root>/<code_dir>/challenge_objects/prepro.
 Suggestions:
 - sqrt, or a power law;
 - products of original features;
 - binarizing;
 - replacing the feature values by their rank.

7) Email your preprocessing learning object to:
 guyoni@inf.ethz.ch with subject "Homework1" no later
 than Tuesday November 1st.
The Datasets

- **Arcene**: cancer vs. normal with mass-spectrometry analysis of blood serum.
- **Dexter**: filter texts about corporate acquisition from Reuters collection.
- **Dorothea**: predict which compounds bind to Thrombin from KDD cup 2001.
- **Gisette**: OCR digit “4” vs. digit “9” from NIST.
- **Madelon**: artificial data.

Data Preparation

- **Preprocessing** and scaling to numerical range 0 to 999 for continuous data and 0/1 for binary data.
- **Probes**: Addition of “random” features distributed similarly to the real features.
- **Shuffling**: Randomization of the order of the patterns and the features.
- **Baseline error rates (errate)**: Training and testing on various data splits with simple methods.
- **Test set size**: Number of test examples needed using rule-of-thumb $n_{test} = 100/errate$.

Data Statistics

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Size</th>
<th>Type</th>
<th>Features</th>
<th>Training Examples</th>
<th>Validation Examples</th>
<th>Test Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arcene</td>
<td>8.7 MB</td>
<td>Dense</td>
<td>10000</td>
<td>100</td>
<td>100</td>
<td>700</td>
</tr>
<tr>
<td>Gisette</td>
<td>22.5 MB</td>
<td>Dense</td>
<td>5000</td>
<td>6000</td>
<td>1000</td>
<td>6500</td>
</tr>
<tr>
<td>Dexter</td>
<td>0.9 MB</td>
<td>Sparse integer</td>
<td>20000</td>
<td>300</td>
<td>300</td>
<td>2000</td>
</tr>
<tr>
<td>Dorothea</td>
<td>4.7 MB</td>
<td>Sparse binary</td>
<td>100000</td>
<td>800</td>
<td>350</td>
<td>800</td>
</tr>
<tr>
<td>Madelon</td>
<td>2.9 MB</td>
<td>Dense</td>
<td>500</td>
<td>2000</td>
<td>600</td>
<td>1800</td>
</tr>
</tbody>
</table>

ARCENE

ARCENE is the cancer dataset

- **Sources**: National Cancer Institute (NCI) and Eastern Virginia Medical School (EVMS).
- **Three datasets**: 1 ovarian cancer, 2 prostate cancer, all preprocessed similarly.
- **Task**: Separate cancer vs. normal.
DEXTER

DEXTER filters texts

NEW YORK, October 2, 2001 - Instinet Group Incorporated (Nasdaq: INET), the world's largest electronic agency securities broker, today announced that it has completed the acquisition of ProTrader Group, LP, a provider of advanced trading technologies and electronic brokerage services primarily for retail active traders and hedge funds. The acquisition excludes ProTrader's proprietary trading business. ProTrader's 2000 annual revenues exceeded $83 million.

- **Sources**: Carnegie Group, Inc. and Reuters, Ltd.
- **Preprocessing**: Thorsten Joachims.
- **Task**: Filter “corporate acquisition” texts.

DOROTHEA

DOROTHEA is the Thrombin dataset

- **Sources**: DuPont Pharmaceuticals Research Laboratories and KDD Cup 2001.
- **Task**: Predict compounds that bind to Thrombin.
GISETTE

GISETTE contains handwritten digits

- **Source**: National Institute of Standards and Technologies (NIST).
- **Preprocessing**: Yann LeCun and collaborators.
- **Task**: Separate digits “4” and “9”.

MADELON

MADELON is random data

- **Source**: Isabelle Guyon, inspired by Simon Perkins et al.
- **Type of data**: Clusters on the summits of a hypercube.
Performance Measures

Confusion matrix

<table>
<thead>
<tr>
<th>Truth</th>
<th>Class -1</th>
<th>Class +1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class -1</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Class +1</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

- **Balanced Error Rate (BER):** the average of the error rates for each class: \(BER = 0.5 \times (b/(a+b) + c/(c+d)) \).
- **Area Under Curve (AUC):** the area under the ROC curve obtained by plotting \(a/(a+b) \) against \(d/(c+d) \) for each confidence value, starting at \((0,1)\) and ending at \((1,0)\).
- **Fraction of Features (FF):** the ratio of the num. of features selected to the total num. of features in the dataset.
- **Fraction of Probes (FP):** the ratio of the num. of “garbage features” (probes) selected to the total num. of feat. select.

BER distribution

- **ARCENE**
- **DEXTER**
- **DOROTHEA**
- **GISETTE**
- **MADELON**
Power of Feature Selection

<table>
<thead>
<tr>
<th></th>
<th>Best frac. feat</th>
<th>Actual frac. probes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCENE</td>
<td>5%</td>
<td>30%</td>
</tr>
<tr>
<td>DEXTER</td>
<td>1.5%</td>
<td>50%</td>
</tr>
<tr>
<td>DOROTHEA</td>
<td>0.3%</td>
<td>50%</td>
</tr>
<tr>
<td>GISETTE</td>
<td>18%</td>
<td>50%</td>
</tr>
<tr>
<td>MADELON</td>
<td>1.6%</td>
<td>96%</td>
</tr>
</tbody>
</table>

CLOP Tutorial

- CLOP=Challenge Learning Object Package.
- Based on the Spider developed at the Max Planck Institute.
- Two basic abstractions:
 - Data object
 - Model object

http://clopinet.com/isabelle/Projects/modelselect/MFAQ.html
CLOP Data Objects

At the Matlab prompt:
- `cd <code_dir>`
- `use_spider_clop;`
- `X=rand(10,8);`
- `Y=[1 1 1 1 -1 -1 -1 -1 -1 -1]';`
- `D=data(X,Y); % constructor`
- `[p,n]=get_dim(D)`
- `get_x(D)`
- `get_y(D)`

CLOP Model Objects

D is a data object previously defined.
- `model = kridge; % constructor`
- `[resu, model] = train(model, D);`
- `resu, model.W, model.b0`
- `Yhat = D.X*model.W' + model.b0`
- `testD = data(rand(3,8), [-1 -1 1]');`
- `tresu = test(model, testD);`
- `balanced_errate(tresu.X, tresu.Y)`
Hyperparameters and Chains

A model often has hyperparameters:

- `default(kridge)`
- `hyper = {'degree=3', 'shrinkage=0.1'};`
- `model = kridge(hyper);`

Models can be chained:

- `model = chain({'standardize',kridge(hyper)});`
- `[resu, model] = train(model, D);`
- `tresu = test(model, testD);`
- `balanced_errate(tresu.X, tresu.Y)`

This week homework...

- Write your own preprocessing object.
- Get inspired by the modules in `challenge_objects/prepro`:
 - `standardize`
 - `normalize`
 - `shift_n_scale`
 - `pc_extract`
- Chain your module with “zarbi” to test it.