Weighted Majority

- Assume K experts f_1, f_2, \ldots, f_K (base learners)
- Each expert makes a decision $f_k(x) = \pm 1$
- Improve predictions by making the experts “vote” according to how good they are:
 \[
 F(x) = \sum_k \alpha_k f_k(x)
 \]
 \[
 0 \leq \alpha_k \leq 1
 \]
 \[
 \sum_k \alpha_k = 1
 \]
- Decision: sign[$F(x)$]

Mixture of Experts/Committee

\[
F(x) = \sum_k \alpha_k f_k(x)
\]
Simple Examples

- **Kernel methods:**
 - Each example is an “expert”
 \[f_i(x) = y_i k(x, x_i) \]
- **Decision stumps:**
 - Each variable is an “expert”
 \[f_i(x) = x_i \quad \text{("orient" variables s.t. } x_1, x_2, \ldots, x_m, y > 0) \]
 - Each feature is an “expert”
 \[f_j(x) = \phi_j(x) \]

Bias-variance tradeoff

- **For the square loss:**
 \[
 E_D[f(x,D)-y]^2 = [E_D[f(x,D)-y]]^2 + E_D[f(x,D)-E_D[f(x,D)]]^2
 \]

Bias: \[E_D[f(x,D)-y]^2 \]

- \(E_D[f(x)] \) : your “ideal” committee machine.
- **Bias**: what your ideal committee can’t learn (from m training examples)
- \(E_D[f(x)] \) has the **same bias** as \(E_D[f(x)] \) but **no variance**.
- Note: Each committee member was trained on a different set on m examples…

Variance: \[E_D[f(x,D)-E_D[f(x,D)]]^2 \]

- \(E_D[f(x)] \) : your “ideal” committee machine.
- **Variance**: how far apart on average your solution \(f(x,D) \) is from your “ideal” committee machine.
- If the **variance is high** but the **bias is low**: there is hope that a committee can improve performance.
- Note: Subsampling introduces extra bias …
Feature Selection

1) Mixture of decision stumps ⇒ feature selection
2) Merging expert feature rankings:
 - Average ranking index: \(C_j = \sum_k \alpha_k C_{jk} \)
 - Average rank: \(C_j = \sum_k \alpha_k (R_{\text{max}} - R_{jk}) \)
3) Merging feature sets selected by experts:
 - Ranking index: \(C_j = \sum_k \alpha_k \delta_{jk} \) (\(\delta_{jk} = 1 \) if feat \(j \) selected by expert \(k \), 0 otherwise)
 - \(S^* = \arg\max_k \min_{k'} |S_k \cap S_{k'}| \) (most 'stable' subset)
 - \(R^* = \arg\min_k \max_{k'} \text{dist}(R_k, R_{k'}) \)
 - http://people.revoledu.com/kardi/tutorial/Similarity/OrdinalVariables.html
4) Sensitivity-based (special for bagging)

Bayesian Approach

Simple Justification

\[
F(x) = \sum_k \alpha_k f_k(x), \quad 0 \leq \alpha_k \leq 1, \quad \sum_k \alpha_k = 1
\]

- \(P(y|x,D) = \sum_l P(l|D) P(y|x,f_l,D) \)
- Individual "expert" decisions: \(P(y|x,f_l,D) \)
- Weights: \(P(l|D) \)

Risk=negative log posterior: \(P(l|D) \propto 1 - R_{\text{emp}}[l] \)

\[P(l|D) \propto \exp(-R_{\text{emp}}[l]/T) \]

Success rate:

\[P(l|D) \propto \exp(-R_{\text{emp}}[l]/T) \exp(-\lambda[l]/T) \]

Bayesian Methods

- \(P(y|x,D) = \sum_l P(l|D) P(y|x,f_l,D) \)
- \(P(y|x,D) = \int f P(f|D) P(y|x,f,D) \) df

\[P(f^*|D) \]

MAP approximation

\[P(y|x,D) = P(y|x,f^*,D) \]

\[P(f^*|D) \Delta f = 1 \]
Difficulties

- **Continuous case:**
 Infinitely many experts, we can’t try them all!
- **Idea:**
 Let’s take a sample…
- **How?**
 Grid, heuristic search, stochastic search
- **Important:**
 Avoid sampling “poor” experts or “redundant” experts.

Iterative Sampling

MCMC

- $P(f|D) \propto \exp(-R[f]/T)$
- Simulated annealing:
 - Make a random step
 - Accept with proba $\exp(-R[f]/T)$
 - Progressively decrease T

 (Metropolis-Hasting, 1953-1970)

- Gibbs sampling:
 - Investigate a bunch of nearby solutions
 - Sample according to $\text{local}_\text{sum} \exp(-R[f]/T)$
 - Start over from new point

 (Geman-Geman, 1984)

Variable-dimension MCMC

- Some steps include removal or addition of a feature
- We obtain $P(\text{model}, \text{feature-subset}|D)$ for some samples of models and feature subsets
- Subset relevance can be computed by marginalization (averaging over the functions using the same subset)
- Feature relevance can also be computed by marginalization (averaging over all subsets containing that feature)
Performance Gain?

- If we draw M classifiers f_k according to $P(f|D)$, we can approximate $P(y|x,D) = \int P(f|D) P(y|x,f,D) \, df$ by $P(y|x,D) \sim \sum_{k=1}^{M} P(y|x,f_k,D)$
- Relative error difference with optimum Bayes classifier decays with $O(1/M)$ (Ng, Jordan, 2001)

Non-Bayesian Approaches

- Parallel ensembles: bagging
- Serial ensembles: boosting

Bagging

Breiman, 1996

- Bootstrap Aggregation:
 - Draw with replacement m samples from the original training set of size m
 - Train a learning machine
 - Repeat many times
 - On average, each example appears in the training set $(1-1/m)^m \approx 1 - e^{-1/2} \approx 0.632$ times

Random Forests

Breiman, 2001

1. A number n is specified much smaller than the total number N of variables (typically $n \approx \sqrt{N}$)
2. Each tree of maximum depth is grown on a bootstrap sample of the training set
3. At each node, n variables are selected at random out of the N
4. The split used is the best split on these n variables
Tree Classifiers

CART (Breiman, 1984) or C4.5 (Quinlan, 1993)

At each step, choose the feature that "reduces entropy" most. Work towards "node purity".

Information Gain

Choose \(f_2 \)

\[
H_{\text{before}} = -\frac{11}{19} \log_2 \left(\frac{11}{19} \right) - \frac{8}{19} \log_2 \left(\frac{8}{19} \right) = 0.98
\]

\[
H_{\text{left}} = -\frac{4}{11} \log_2 \left(\frac{4}{11} \right) - \frac{7}{11} \log_2 \left(\frac{7}{11} \right) = 0.94
\]

\[
IG = -\frac{11}{19} H_{\text{left}} + \frac{8}{19} H_{\text{right}} = 0.98 - 0.78 = 0.2
\]

Embedding Variable Scoring

- \(IG_t(f) = \) Information gain due to splitting with feature \(f \) at node \(t \)
- Ranking index: \(R(f) = \sum_t IG_t(f) \)
- Surrogate variables (detect masking)
- Use of M trees:
 \[
 R(f) = \sum_T \sum_{t \in T} IG_t(f)
 \]

Iris Data
Sensitivity-based Scoring

Breiman, 2001

• Classify the OOB cases and count the number of votes cast for the correct class in every
tree grown in the forest
• Randomly permute the values of feature \(f \) in the OOB cases and classify these cases
down the trees
• Subtract the number of votes for the correct class in the feature-\(f \) permuted OOB data
 from the untouched OOB data
• Average this number over all trees in the forest to obtain the importance score \(R(f) \)

Cross-validated Committee

Parmanto et al., 1996

• Any learning machine
• Any method of splitting the (training) data many times into training set and validation set (vset)
• Perturb feature \(f \) randomly in vset (pvset)
• \(R(f) = \text{mean} [\text{num-correct-class(vset)} - \text{num-correct-class(pvset)}] \)
• \(Z\text{score} = R(f)/\text{stderr} \)

Boosting

• Adaboost (Freund and Schapire, 1996): At every step add a new base learner that is forced (by re-weighting the training data) to concentrate on misclassified examples.
• Forward stagewise boosting (Breiman, 1997, Friedman et al., 2000)
 1. Initialize \(F(x)=0 \)
 2. For \(k=1 \) to \(M \)
 \(F(x) \leftarrow F(x) + \alpha f(x) \)
 \((\alpha_k, f_k) = \text{argmin}_{\alpha, f} \sum_i \exp(-y_i F(x_i)) \)
 3. Output \(F(x) = \sum_{k=1:M} \alpha_k f_k(x) \)

Loss Functions

- 0/1 loss
- Square loss \((1-z)^2 \)
- SVC loss, \(\beta=1 \)
 \(\max(0, 1-z) \)
- Logistic loss
 \(\log(1+e^{-z}) \)
- Adaboost loss
 \(e^{-z} \)
- Perceptron loss
 \(\max(0, -z) \)
- SVC loss, \(\beta=2 \)
 \(\max(0, (1-z)^2) \)
- Square loss
 \((1-z)^2 \)
Conclusion

- Ensemble methods help reducing the "variance"
- They benefit most to "low bias" base learners
- One should not confuse feature set variability and variance in predictions
- CV committees allow to rank features according to sensitivity ans compute zscores.

Exercise Class

Arcene
Boosting

Arcene

Best performances: 11.9% ± 1.2 (use training set + validation set in training) with 11% of the features (1100 features)

Baseline model: 14.7% ±1.4 1100 features

```matlab
my_svc=svc({'coef0=1', 'degree=3', 'gamma=0', 'shrinkage=0.1'});
my_model=chain({standardize, s2n('f_max=1100'), normalize, my_svc})
```

Forward Stagewise Boosting

1. Initialize \(F(x) = 0 \)
2. For \(k=1 \) to \(M \)
 \[F(x) \leftarrow F(x) + \alpha f(x) \]
 \((\alpha_k, f_k) = \text{argmin}_{\alpha, f} \sum_i \exp[-y_i (F_{t-1}(x_i) + \alpha f(x_i))] \)
3. Output \(F(x) = \sum_{k=1}^M \alpha_k f_k(x) \)

At step \(t \):
\[
(\alpha_k, f_k) = \text{argmin}_{\alpha, f} \sum_i \exp[-y_i (F_t(x_i) + \alpha f(x_i))]
\]
Compute \(\alpha_k, f_k \) for decision stumps
\[\alpha = \frac{1}{2} \log \left(\frac{1 - E(f)}{E(f)} \right) \]

Adaboost

- Initialize \(\alpha_i = \frac{1}{2} \) for all \(i = 1, \ldots, N \).
- For every round \(r = 1, \ldots, T \) do:
 - For every instance \((x_i, y_i) \) do:
 - Minimize the weighted error of the current model \(f_r(x_i) \):
 \[E_r = \sum_{i=1}^{N} w_i \mathbb{I}[f_r(x_i) \neq y_i] \]
 \[w_i \text{ is the weight of instance } x_i \]
 \[\text{end for} \]
 - Compute the weight update \(\Delta w_i \):
 \[\Delta w_i = \frac{w_i}{\sum_{i=1}^{N} w_i} \exp \left(-2 \alpha_r y_i f_r(x_i) \right) \]
 \[\text{end for} \]
 - Update the weights:
 \[w_i^{r+1} = w_i^r \exp \left(\Delta w_i \right) \]
 \[\text{end for} \]
- Output the final model:
 \[f(x) = \text{sign} \left(\sum_{r=1}^{T} \alpha_r f_r(x) \right) \]