
1

Lecture 12:
Ensemble Methods

Isabelle Guyon
guyoni@inf.ethz.ch

Book Chapter 7

Introduction

Weighted Majority

• Assume K experts f1, f2, …fK (base learners)

• Each expert makes a decision fk(x) = ±1

• Improve predictions by making the experts 
“vote” according to how good they are:

F(x) =  Σ k αk fk (x) 0≤αk ≤1

Σ k αk =1

• Decision: sign[ F( x) ]

Mixture of Experts/Committee

F(x) = Σk αk fk(x) 
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Simple Examples

• Kernel methods:
– Each example is an “expert”

f i(x) = yi k(x, xi)
• Decision stumps:

– Each variable is an “expert”
f j(x) = xj             (“orient” variables s.t. [x1, x2, …xm] y >0)

– Each feature is an “expert”
f j(x) = φj(x)

Bias-variance tradeoff

• D = one training set of size m (m fixed)
• For the square loss:
ED[f(x,D)-y]2 = [EDf(x,D)-y]2 + ED[f(x,D)-EDf(x,D)]2

VarianceBias2Expected value 
of the loss over 
datasets D of 
the same size EDf(x,D)f(x,D)

y target

Bias2

Variance

http://www. salford-systems.com/doc/BIAS_VARIANCE_ARCING.pdf

Bias: [EDf(x,D)-y]2

• EDf(x) : your “ideal” committee machine.

• Bias : what your ideal committee can ’t learn 
(from m training examples)

• EDf(x) has the same bias as EDf(x) but no 
variance .

• Note: Each committee member was trained 
on a different set on m examples…

Variance: ED[f(x,D)-EDf(x,D)]2

• EDf(x) : your “ideal” committee machine.

• Variance : how far apart on average your 
solution f(x,D) is from your “ ideal” committee 
machine.

• If the variance is high but the bias is low : 
there is hope that a committee can improve 
performance. 

• Note: Subsampling introduces extra bias …
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Feature Selection

1) Mixture of decision stumps ⇔ feature selection
2) Merging expert feature rankings:

– Average ranking index: Cj = Σk αk Cjk

– Average rank: Cj = Σk αk (Rmax-Rjk)

3) Merging feature sets selected by experts:
– Ranking index: Cj = Σk αk δjk (δjk=1 if feat j selected 

by expert k,
0 otherwise)

– S* = argmaxk mink’ |Sk ∩ Sk’| (most “stable” subset)
– R* = argmink maxk’ dist(Rk,Rk’)
http://people.revoledu.com/kardi/tutorial/Similarity/OrdinalVari ables.html

4) Sensitivity-based (special for bagging)

Bayesian Approach

Simple Justification

• P(y|x,D) = Σ f P(f|D) P(y|x,f,D) 
• Individual “expert” decisions: P(y|x,f,D)

• Weights: P(f|D)
Success rate:

P(f|D)≅1-Remp[f]Risk=negative log posterior:

P(f|D) α exp(-Rreg[f]/T)

P(D|f) P(f) α exp(-Remp[f]/T) exp(-λ||f||2/T)

F(x) = Σk αk f k(x)  ,      0≤αk ≤1,   Σk αk =1

Bayesian Methods

• P(y|x,D) = Σf P(f|D) P(y|x,f,D)

• P(y|x,D) = ∫f P(f|D) P(y|x,f,D) df

f

P(f|D)

f*

MAP approximation
P(y|x,D) = P(y|x,f*,D)

∆f

P(f*|D)

P(f*|D) ∆f = 1
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Difficulties

• Continuous case:
Infinitely many experts, we can’t try them all!

• Idea:
Let’s take a sample…

• How?

Grid, heuristic search, stochastic search
• Important:

Avoid sampling “poor” experts or “redundant”
experts.

Iterative Sampling
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MCMC

• P(f|D) α exp(-R[f]/T)
• Simulated annealing:

– Make a random step
– Accept with proba exp(-R[f]/T)
– Progressively decrease T
(Metropolis-Hasting, 1953- 1970)

• Gibbs sampling:
– Investigate a bunch of nearby solutions
– Sample according to local_sum exp(-R[f]/T)
– Start over from new point
(Geman-Geman, 1984)

f-space

R[f]

Variable-dimension MCMC

Vehtari and Lampinen, 2002

• Some steps include removal or addition of a 
feature

• We obtain P(model,feature-subset|D) for 
some samples of models and feature subsets

• Subset relevance can be computed by 
marginalization (averaging over the functions 
using the same subset)

• Feature relevance can also be computed by 
marginalization (averaging over all subsets 
containing that feature)
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Performance Gain?

• If we draw M classifiers fk according to P(f|D), 
we can approximate

P(y|x,D) = ∫f P(f|D) P(y|x,f,D) df

by

P(y|x,D) ~ Σk=1:M P(y|x,fk,D)

• Relative error difference with optimum Bayes 
classifier decays with O(1/M) (Ng, Jordan, 2001)

Non-Bayesian Approaches

• Parallel ensembles: bagging
• Serial ensembles: boosting

Bagging

• Bootstrap Aggregation: 
– Draw with replacement m samples from 

the original training set of size m
– Train a learning machine

– Repeat many time
– On average, each example appears in the 

training set (1-1/m)m~1-e- 1~0.632 times

Breiman, 1996

Random Forests

1. A number n is specified much smaller than 
the total number N of variables (typically n ~ 
sqrt(N))

2. Each tree of maximum depth is grown on a 
bootstrap sample of the training set

3. At each node, n variables are selected at 
random out of the N

4. The split used is the best split on these n 
variables

Breiman, 2001



6

Tree Classifiers

CART (Breiman, 1984) or C4.5 (Quinlan, 1993) 

At each step, 
choose the 
feature that 

“reduces entropy” 
most. Work 

towards “node 
purity”.

All the 
data

f1

f2

Choose f2

Choose f1

IG = Hbefore – (11/19 Hleft  + 8/19 Hright) = 0.98 – 0.78 = 0.2

Information Gain
Hbefore= -11/19 log(11/19) -8/19 log(8/19) = 0.98

All the 
data

f1

f2

Hleft= -4/11 log(4/11) –7/11 log(7/11) = 0.94

Choose f2
11/19 8/19

Hright= -7/8 log(7/8) –1/8 log(1/8) = 0.54

Embedded Variable Scoring

• IGt(f) = Information gain due to splitting 
with feature f at node t

• Ranking index: R(f) = Σt IGt(f) 
• Surrogate variables (detect masking)
• Use of M trees:

R(f) = ΣT Σt∈T IGt(f) 

Iris Data
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Sensitivity-based Scoring

• Classify the OOB cases and count the 
number of votes cast for the correct class in 
every tree grown in the forest

• Randomly permute the values of feature f in 
the OOB cases and classify these cases 
down the trees

• Subtract the number of votes for the correct 
class in the feature-f permuted OOB data 
from the untouched OOB data

• Average this number over all trees in the 
forest to obtain the importance score R(f)

Breiman, 2001

Cross-validated Committee

• Any learning machine
• Any method of splitting the (training) data 

many times into training set and 
validation set (vset)

• Perturb feature f randomly in vset (pvset)
• R(f) = mean[ num-correct-class(vset) -

num-correct-class(pvset) ]
• Zscore = R(f)/stderror

Parmanto et al., 1996

Boosting

• Adaboost (Freund and Schapire , 1996): At every 
step add a new base learner that is forced (by re-weighting 
the training data) to concentrate on misclassified examples.

• Forward stagewise boosting (Breiman, 1997, 
Friedman et al., 2000)
1. Initialize F(x)=0
2. For k=1 to M

F(x) ← F(x) + α f(x)

(αk, fk) = argminα,f Σi exp(-yi F(xi))

3. Output F(x) = Σ k=1:M αk fk(x)

Loss Functions
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Decision 
boundary

Margin

well classifiedmissclassified

0/1 loss

square loss 
(1- z)2

SVC loss, β=1 
max(0, 1-z)

logistic loss 
log(1+e-z)

Adaboost 
loss e-z

Perceptron loss 
max(0, -z)

SVC loss, β=2 
max(0, (1- z))2
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Conclusion

• Ensemble methods help reducing the 
“variance”

• They benefit most to “low bias” base 
learners

• One should not confuse feature set 
variability and variance in predictions

• CV committees allow to rank features 
according to sensitivity ans compute 
zscores.

Exercise Class

Arcene
Boosting

Arcene
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Best performances: 11.9% ±1.2 (use training set + validation 
set in training) with 11% of the features (1100 features)

Baseline model: 14.7% ±1.4, 1100 features
my_svc=svc({'coef0=1', 'degree=3', 'gamma=0', 
'shrinkage=0.1'});

my_model=chain({standardize, s2n('f_max=1100'), 
normalize, my_svc})

Forward Stagewise Boosting

1. Initialize F(x)=0

2. For k=1 to M

F(x) ← F(x) + α f(x)

(αk, fk) = argminα,f Σi exp(-yi F(xi))

3. Output F(x) = Σ k=1:M αk fk(x)

At step t:

(αk, fk) = argminα,f Σi exp[-yi (Ft-1(xi) + α f(xi))]

Compute αk, fk for decision stumps
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α=1/2 log (1-E(f))/E(f)

m

m

Adaboost

m m

m m
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