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Lecture 2:
Introduction (continued)

Learning Machines
Isabelle Guyon

guyoni@inf.ethz.ch

Class Organization

• Office hours: Tuesday 10:00AM-12:00AM,
CAB E 45 :

• Homework: turn in the homework tuesday
afternoon.

• Exercise class: bring your laptop.
• List of questions: answers available on web 

page.
• Choose your paper: 

http://clopinet.com/isabelle/Projects/ETH/
Email to: guyoni@inf.ethz.ch
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Papers Left

• Combining support vector machines with 
different feature selection strategies by Yi-Wei
Chen and Chih-Jen Lin (rank top 3, authors of 
LibSVM.)

• Piecewise Linear Regularized Solution Paths
Saharon Rosset and Ji Zhu (students of Hastie, 
new algorithm advance.)

• Bayesian SVM for feature weighting and 
selection Wei Chu et al.
(bridges the gap between risk-minimization and 
bayesian techniques.)

Grading

• Challenge submissions (10 points): 
- for each dataset, a baseline model is provided having a 

baseline performance BER0 and number of features n0

- Earn 1 point per dataset for a valid submission having 
{BER<BER0 , any n} or {BER≤BER0 and n<n0}

- Earn 2 points per dataset for a submission outperforming 
the best challenge entry.

• Paper presentation (5 points)
• Final exam, poster + questions (15 points)

(contents=5; presentation=5; questions: 5)

Grade = max(6, num_points/4);
Pass: Grade ≥ 4
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Feature Selection Basics

Textbook “Introduction”

Learning problem

Colon cancer,Alon et al 1999

Unsupervised learning
Is there structure in data?

Supervised learning
Predict an outcome.

Data matrix: X

m lines = patterns (data points, 
examples): samples, patients, 
documents, images, …

n columns = features: (attributes, 
input variables): genes, proteins, 
words, pixels, …
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Feature Selection

• Thousands to millions of low level 
features: select the most relevant one to 
build better, faster, and easier to 
understand learning machines.

X

n

m

n’

Leukemia Diagnosis

Golub et al, Science Vol 286:15 Oct. 1999

+1

-1

-1

+1

wj = Σi xij yi

m

n’

f(x) = Σj wj xj

{yi}, i=1:m{-yi}

(with “proper 
normalization” of 
the data matrix)
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Elisseeff-Weston, 2001

U29589

HOXC8

RACH1

BPH

G4

G3

Prostate Cancer Genes

Scatter Plots

x1

x2

x=[x1,x2]
f(x)=0

f(x)<0f(x)>0
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One Informative Feature

y=+1y=-1

x1>0x1<0

Rotation
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An Informative Pair

Two no better than one
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Back to first example

One “Useless” Feature
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Mass-Spectrometry
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F1: The peak of interest
F2: The best local estimate of the baseline.

Two “Useless” Features
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Summary

• A lot can be achieved by looking at the 
separating power of single features.

BUT

• Some problems are inherently multi-
dimensional, so subsets of features 
should sometimes be considered.

Nomenclature

• Univariate method: considers one 
variable (feature) at a time.

• Multivariate method: considers subsets 
of variables (features) together.

• Filter method: ranks features or feature 
subsets independently of the predictor 
(classifier).

• Wrapper method: uses a classifier to 
assess features or feature subsets.
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Three Ingredients

Machine Learning

Textbook “Chapter 1”



12

Some Learning Machines

• Linear discriminant 
• Kernel methods
• Neural networks

Conventions

• X = {xij} training data matrix, i=1:m, j=1:n 
xi = {xj} matrix line, training pattern i
x test pattern, dim n

• yi target value of pattern i
y target value of test pattern

• w weight vector, dim n
• α weight vector, dim m
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Linear Discriminant

• f(x) = w • x +b = Σj=1:n wj xj +b         

Linearity in the parameters, NOT in the input 
components.

• f(x) = w • Φ(x) +b = Σj wj φj(x) +b (Perceptron)

• f(x) = Σi=1:m αi k(xi,x) +b (Kernel method)

Artificial Neuron

f(x) = w • x + b

McCulloch and Pitts, 1943
x1

x2

xn

1

Σ f(x)

w1

w2

wn

b

artificial neuron = linear discriminant
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Linear Decision Boundary

hyperplane

Perceptron

f(x)

f(x) = w • Φ(x) + b

Rosenblatt, 1957
φ1(x)

1

x1

x2

xn

φ2(x)

φN(x)

Σ
w1

w2

wN

b



15

Kernel Method

f(x) = Σi αi k(xi,x) + b

k(x1,x)

1

x1

x2

xn

Σ
α1

α2

αm

b

Potential functions, Aizerman et al 1964

k(x2,x)

k(xm,x)

k(. ,. ) is a similarity measure or “kernel”.

Hebb’s Rule

wj ← wj + yi xij

wj = Σi yi xij

w = Σi yi xi

= m+ µ+ - m- µ-
If m+=m-, classify to the nearest centroid.
Link to “Naïve Bayes”.

Σ y
xj wj
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Kernel “Trick” (Hebb)

• Hebb’s rule for the Perceptron: 

w = Σi yi Φ (xi) 

f(x) = w • Φ(x) = Σi yi Φ(xi) • Φ(x) 
• Define a dot product: 

k(xi,x) = Φ(xi) • Φ(x) 

f(x) = Σi yi k(xi,x) 

Kernel “Trick” (general)

• f(x) = Σi α i k(xi, x)

• k(xi, x) = Φ (xi) • Φ (x)

• f(x) = w • Φ(x)

• w = Σi α i Φ(xi)

Dual forms
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What is a Kernel?

A kernel is a dot product in some feature 
space: k(s, t) = Φ(s) • Φ(t)

• Examples:
• k(s, t) = exp(-||s-t||2/σ2) Gaussian kernel
• k(s, t) = 1/||s-t|| Potential function

• k(s, t) = (s • t)q Polynomial kernel
([s1,s2]•[t1,t2])2 = [s1

2,s2
2,√2s1s2] .[t12,t22,√2t1t2]

Φ (s) Φ (t)k(s, t)

Multi-Layer Perceptron

Back-propagation, Rumelhart et al, 1986

Σ
xj

Σ

Σ

“hidden units”

internal “latent” variables
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XOR Problem

Minsky and Papert, 1969

{ I , I }

{ - , - }

{-,I}

{I,-}

Chessboard Problem
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How to Train?

• Define a risk functional R[f(x,w)]
• Find a method to optimize it, typically 

“gradient descent”
wj ← wj - η ∂R/∂wj

or any optimization method 
(mathematical programming, simulated 
annealing, genetic algorithms, etc.)

Summary

• With linear threshold units (“neurons”) we can 
build:
– Linear discriminant
– Kernel methods
– Neural networks

• The architectural hyper-parameters may 
include:
– The choice of basis functions φ (features)
– The kernel 
– The number of hidden units.
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Risk Minimization

• Learning problem: find the best 
function f(x; α) minimizing the risk 
functional 

R[f] = ∫ L(f(x; α), y) dP(x, y)

• Examples are given:
(x1, y1), (x2, y2), … (xm, ym)

loss function unknown distribution

Loss Functions

-1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

z=y f(x)

L(y, f(x)) Decision 
boundary

Margin

well classifiedmissclassified

0/1 loss

square loss 
(1- z)2

SVC loss 
max(0, 1-z)

logistic loss 
log(1+e-z)

Adaboost 
loss e-z

Perceptron loss 
max(0, -z)



21

Approximations of R[f]

R[f] = ∫ L(f(x; α), y) dP(x, y)
• Empirical risk: Remp[f] = Σi L(f(xi; α), yi)
• Guaranteed risk: 

Rgua[f]
Proba( R[f] > Remp[f] + ε ) < δ

• Penalized/regularized risk:
Rreg[f] = Remp[f] + Ω[f]

m

R

capacity

ε

R

MAP ≅ RRM

• Maximum A Posteriori (MAP):
f = argmax P(f|D)

= argmax P(D|f) P(f)
= argmin –log P(D|f)       –log P(f)

• Regularized Risk Minimization (RRM):
f = argmin R[f] + Ω[f]

Negative log likelihood 
= Empirical risk R[f]

Negative log prior 
= Regularizer Ω[f]
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Example: Gaussian Prior

• Linear model: 
f(x) = w.x

• Gaussian prior:
P(f) = exp -||w||2/σ2

• Regularizer:
Ω[f] = –log P(f) = λ ||w||2

w1

w2

Summary

• Model complexity affects generalization.

• Model complexity may be monitored by 
the ridge of “weight decay” hyper-
parameter.

• Weight decay=Gaussian prior in weight 
space.
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Practical Work

Homework 2:

1) Download the datasets (see homework 1). Download the 
latest version of CLOP (see homework 1).

2) Download the sample code from:
http://clopinet.com/isabelle/Projects/ETH/homework2.zip
Run the sample code main.m. 

3) Modify the baseline model (try to obtain better 
performances or fewer features)

4) Email the result zip file of the results to guyoni@inf.ethz.ch
with subject "Homework2" no later than:
Tuesday November 8 th.



24

Homework 2: Gisette

• Handwritten digits.
• Goal: get familiar with the data and result 

formats. Make a first submission.
• Easiest LM for Gisette: naive and svc.
• Best preprocessing: normalize.
• Easiest feature selection method: s2n.
• Many training examples (6000). Unsuitable 

for kridge unless subsampling is used.
• Many features (5000). Select features before 

running neural or rf.

Hyper-parameters

• http://clopinet.com/isabelle/Projects/modelsel
ect/MFAQ.html

• Kernel methods: kridge and svc:
k(x, y) = (coef0 + x • y)degree exp(-gamma ||x - y||2)
kij = k(xi, xj)
kii ← k ii + shrinkage

• Naïve Bayes: naive: none
• Neural network: neural 

units, shrinkage, maxiter
• Random Forest: rf (windows only)

mtry
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Best Challenge Performances

Without the validation labels:
• Yi-Wei Chen BER=1.37% feat= 18.26%
• Saharon Rosset BER=1.34 % feat=30%
• Radford Neal BER=1.29% feat=100%
With the validation labels:
• Yi-Wei Chen BER=1.35% feat=18.32% 
• Thomas Navin Lal BER=1.31% feat=34%
• Radford Neal BER=1.26% feat=100%
• GhostMiner BER=1.31% feat=100%

Baseline Model

baselineGisette (BER=1.8%, feat=20%)

my_classif=svc({'coef0=1', 
'degree=3', 'gamma=0', 
'shrinkage=1'});

my_model=chain({normalize, 
s2n('f_max=1000'), my_classif});


