Lecture 3: Shrinkage

Isabelle Guyon
guyoni@inf.ethz.ch

References

Structural risk minimization for character recognition
Isabelle Guyon et al.

Kernel Ridge Regression
Isabelle Guyon

Ockham’s Razor

- Principle proposed by William of Ockham in the fourteenth century: “Pluralitas non est ponenda sine necesseitate”.
- Of two theories providing similarly good predictions, prefer the simplest one.
- Shave off unnecessary parameters of your models.

The Power of Amnesia

- The human brain is made out of billions of cells or Neurons, which are highly interconnected by synapses.
- Exposure to enriched environments with extra sensory and social stimulation enhances the connectivity of the synapses, but children and adolescents can lose them up to 20 million per day.
Artificial Neurons

\[f(x) = w \cdot x + b \]

Hebb’s Rule

\[w_j \leftarrow w_j + y_i x_{ij} \]

Weight Decay

\[
\begin{align*}
 w_j &\leftarrow w_j + y_i x_{ij} & \text{Hebb’s rule} \\
 w_j &\leftarrow (1-\lambda) w_j + y_i x_{ij} & \text{Weight decay}
\end{align*}
\]

\(\lambda \in [0, 1] \), decay parameter

Sigma-Pi Unit
One Dimensional Example

\[f(x) = w \cdot \xi \]

Polynomial function

Conventions

- \(X = \{x_{ij}\} \) training data matrix, \(i=1:m, j=1:n \)
- \(x_i = \{x_j\} \) matrix line, training pattern \(i \)
- \(x \) test pattern, dim \(n \)
- \(y_i \) target value of pattern \(i \)
- \(y \) target value of test pattern
- \(w \) weight vector, dim \(n \)
- \(\alpha \) weight vector, dim \(m \)
Matrix Notations

\[w_j = \sum_i y_i x_{ij} \]
\[w = y^T X \]
\[w^T = X^T y \]

\[f(x) = \sum_j w_j x_j \]
\[f(x) = x w^T = w x^T \]

Linear Regression

- What we want:
 \[\sum_j w_j x_{ij} = y_i \text{ for all examples } i=1 \ldots m \] (\(b=w_0 \))
 or for classification, \(y_i=\pm 1, \text{ sign} (\sum_j w_j x_{ij}) = y_i \)

- Solve:
 \[X w^T = y \]

Regression: \(m>n \)

- Solve:
 \[X w^T = y \]

- Normal equations
 \[X^T X w^T = X^T y \]

- Solution:
 \[w^T = (X^T X)^{-1} X^T y \]

Pseudo-Inverse

- Solution:
 \[w^T = (X^T X)^{-1} X^T y \]

- Predictor:
 \[f(x) = x w^T = x X^T y \]

- Residual:
 \[y - y = y - X w^T = (I - XX^T) y \]
Least-Squares

The pseudo-inverse solution is optimal in the least-square sense:

\[
\min_w \| y - Xw^T \|^2 = \| (I-XX^T)y \|^2
\]

Gradient Descent

- **Square loss:**
 \[
 L_i = (x_iw^T - y_i)^2
 \]
- **Sum of squares:**
 \[
 R = \sum (x_iw^T - y_i)^2 = \| Xw^T - y \|^2 = wX^TXw^T - 2X^Ty + y^Ty
 \]
- **Gradient:**
 \[
 \nabla_w R = 2 (X^TXw^T - X^Ty)
 \]

Normal Equations

- At the optimum:
 \[
 \nabla_w R = 0
 \]
 \[
 2 (X^TXw^T - X^Ty) = 0
 \]
- **Normal equations (again):**
 \[
 X^TXw^T = X^Ty
 \]
 Solve by inverting \(X^TX \), if regular.
- What if \(X^TX \) is singular?

Regularization

- **Normal equations:**
 \[
 X^TXw^T = X^Ty
 \]
- Case \(m<n \) (interpolation), rank(\(X \)) \(\leq m<n \), matrix \(X^TX \) singular.
- Replace \(X^TX \) by \((X^TX + \lambda I)^{-1}X^Ty \), \(\lambda > 0 \)
- **Solution:**
 \[
 w^T = (X^TX + \lambda I)^{-1}X^Ty
 \]
 Regularized inverse
Why it works

- **Diagonalization:**
 \[X'X = U D U^T \]

 - U orthogonal matrix of eigenvectors (\(UU^T=I\))
 - D diagonal matrix of eigenvalues
 - Singularity: some eigenvalues are zero.
- **Regularization:**
 \[X'X + \lambda I = U (D + \lambda I) U^T \]
 \(\lambda > 0\)
 no more zero eigenvalue.

Penalized Risk

- **Sum of squares:**
 \[R = \Sigma \langle x_i, w^T - y \rangle^2 = ||Xw^T - y||^2 \]
- **Add “regularizer”:**
 \[R = ||Xw^T - y||^2 + \lambda ||w||^2 \]
- **Gradient:**
 \[\nabla_{w}R = 2 ((X'X + \lambda I)w^T - X'y) - 2\lambda w \]

Mechanical Interpretation

- **Quadratic form:**
 \[R = ||Xw^T - y||^2 + \lambda ||w||^2 \]
- **One dimension:**
 \[R = p (w-w_0)^2 + \lambda w^2 \]
- **Two dimensions:**

 - Problem: Construct features that are linear combinations of the original features, such that the reconstructed patterns are as close as possible to the original in the least square sense.
 - \(f'_k = X u_k\) linear combinations of columns of X
 - \(x''_i = x'_i U' = \Sigma x' u_k\) reconstructed pattern
 - \(x''_i \neq x'_i U' \neq \Sigma X' \neq X' \neq \Sigma U' \neq X''_i\)
PCA Solution

- $X' = X U$
- $X'' = X' U^T$
- $\min_U ||X - X U U^T||^2$
- Can be brought back to solving and eigenvalue problem: $X^T X = U D U^T$ i.e. $X^T X = D$
- Compare:
 - Regularization $X^T X + \lambda I = U (D + \lambda I) U^T$
 - PCA: Remove the dimensions with smallest eigenvalues.

Kernel “Trick” ($m<n$)

- Solve: $X w^T = y$
- Assume: $w = \sum_i \alpha_i x_i = \alpha^T X$
- Solve instead: $X^T X \alpha = y$
- Solution: $\alpha = (X^T X)^{-1} y$

Kernel Ridge Regression

- $\Xi = \Phi(X)$
- Solve: $\Xi w^T = y$
- Assume: $w = \sum_{i} \alpha_i \xi_i = \alpha^T \Xi$
- Solve instead: $\Xi^T \alpha = y$
- Solution: $\alpha = K^{-1} y$
- Regularization: replace K by $K + \lambda I$

Regularization and PI

- Case $m>n$ and $\text{rank}(X^T X) = n$
 - $X^* = (X^T X)^{-1} X^T$
- Case $m<n$ and $\text{rank}(X^T X) = m$
 - $X^* = X^T (X^T X)^{-1}$
- Either case:
 - $X^* = \lim_{\lambda \to 0} (X^T X + \lambda I)^{-1} X^T$
 - $= \lim_{\lambda \to 0} X^T (X^T X + \lambda)^{-1}$
Weight Decay for MLP

Replace: \(w_j \leftarrow w_j + \text{back}_\text{prop}(j) \)

by:

\[
\begin{align*}
 w_j & \leftarrow (1-\lambda) w_j + \text{back}_\text{prop}(j) \\
\end{align*}
\]

Priors and Bayesian Learning

- Double random process:
 - Draw a target function \(f \) in a family of functions \(\{f\} \)
 - Draw the data pairs \((x_i, y_i = f(x_i) + \text{noise}) \)
- The distribution of \(f \) is called the “prior” \(P(f) \).
- Our revised opinion about \(f \) once we see the data is the “posterior” \(P(f|D) \).
- Bayesian “learning”:
 \[
 P(y|x,D) \propto \int P(y|x,D,f) \, dP(f|D)
 \]
- MAP:
 \[
 f = \underset{f}{\text{argmax}} \ P(f|D) \\
 = \underset{f}{\text{argmax}} \ P(D|f) \, P(f)
 \]

MAP = RRM

- Maximum A Posteriori (MAP):
 \[
 f = \underset{f}{\text{argmax}} \ P(D|f) \, P(f) \\
 = \underset{f}{\text{argmin}} \ -\log P(D|f) \quad -\log P(f)
 \]
 = Empirical risk \(R[f] \) = Regularizer \(\Omega[f] \)

- Regularized Risk Minimization (RRM):
 \[
 f = \underset{f}{\text{argmin}} \ R[f] + \Omega[f]
 \]

Example: Gaussian Prior

- Linear model:
 \[
 f(x) = x^TW^T
 \]
- Square loss \(\Leftrightarrow \) Gaussian noise:
 \[
 P(D|f) = \exp\left(-\frac{||X^T w - y||^2}{\sigma^2}\right)
 \]
 \[
 R[f] = -\log P(D|f) \sim ||X^T w - y||^2
 \]
- Weight decay \(\Leftrightarrow \) Gaussian prior:
 \[
 P(f) = \exp\left(-\lambda||w||^2\right)
 \]
 \[
 \Omega[f] = -\log P(f) = \lambda||w||^2
 \]
Structural Risk Minimization

- Nested subsets of models, increasing complexity/capacity:
 \[S_1 \subset S_2 \subset \ldots \subset S_N \]
- Example, rank with \(\|w\|^2 \)
 \[S_k = \{ w \mid \|w\|^2 < A_k \}, A_1 < A_2 < \ldots < A_k \]
- Minimization under constraint:
 \[\min R_{emp}[f] \quad \text{s.t.} \quad \|w\|^2 < A_k \]
- Lagrangian:
 \[R_{reg}[f] = R_{emp}[f] + \lambda \|w\|^2 \]

Conclusion

- Weight decay is a means of avoiding "overfitting" that is justifiable from many perspectives:
 - Ockham's razor
 - Synaptic decay
 - Regularization
 - Gaussian prior on the weights
 - Structural risk minimization
- It works for linear models, kernel methods, and neural networks.
- It can be combined with various loss functions.

Practical Work

Homework 3:

1) Same data and software as homework 2.
2) Create a heatmap of the 100 top ranking features you selected.
3) Make a scatter plot of the 3 top ranking features you selected.
4) Email the result zip file with the figures to guyoni@inf.ethz.ch with subject "Homework3" no later than:
 Tuesday November 15th.
Risk Minimization

- **Learning problem**: find the best function \(f(x; \alpha) \) minimizing the risk functional
 \[
 R[f] = \int \mathcal{L}(f(x; \alpha), y) \, dP(x, y)
 \]
- **Examples are given**:
 \((x_1, y_1), (x_2, y_2), \ldots, (x_m, y_m)\)

Loss Functions

- **Logistic loss**: \(\log(1 + e^{-z}) \)
- **SVC loss**: \(\max(0, 1 - z) \)
- **Perceptron loss**: \(\max(0, -z) \)
- **Kernel “Trick”**
 - \(f(x) = \sum_{i} \alpha_i k(x_i, x) \)
 - \(k(x_i, x) = \Phi(x_i) \cdot \Phi(x) \)
 - **Dual forms**
 - \(f(x) = w \cdot \Phi(x) \)
 - \(w = \sum_{i} \alpha_i \Phi(x_i) \)
 - **Examples**:
 - \(k(s, t) = \exp(-||s-t||^2/\sigma^2) \) Gaussian kernel
 - \(k(s, t) = 1/||s-t|| \) Potential function
 - \(k(s, t) = (s \cdot t)^q \) Polynomal kernel

What is a Kernel?

A kernel is a dot product in some feature space: \(k(s, t) = \Phi(s) \cdot \Phi(t) \)

- **Examples**:
 - \(k(s, t) = \exp(-||s-t||^2/\sigma^2) \) Gaussian kernel
 - \(k(s, t) = 1/||s-t|| \) Potential function
 - \(k(s, t) = (s \cdot t)^q \) Polynomal kernel

\[
\begin{align*}
 k(s, t) &= \begin{bmatrix} s_1^2 & s_2^2 & \ldots & s_n^2 \\
 s_1 t_1 & s_2 t_2 & \ldots & s_n t_n \\
 \vdots & \vdots & \ddots & \vdots
 s_1 t_n & s_2 t_n & \ldots & t_n^2
\end{bmatrix} \\
 \Phi(s) &= \begin{bmatrix} s_1 \\
 s_2 \\
 \vdots \\
 s_n
\end{bmatrix} \\
 \Phi(t) &= \begin{bmatrix} t_1 \\
 t_2 \\
 \vdots \\
 t_n
\end{bmatrix}
\end{align*}
\]
Simple Kernel Methods

\[f(x) = w \cdot \Phi(x) \]
\[w = \sum \alpha_i \Phi(x_i) \]

Perceptron algorithm
\[w \leftarrow w + y_i \Phi(x_i) \quad \text{if } y_i f(x_i) < 0 \]
(Rosenblatt 1958)

Minover (optimum margin)
\[w \leftarrow w + y_i \Phi(x_i) \quad \text{for min } y_i f(x_i) \]
(Krauth-Mézard 1987)

LMS regression
\[w \leftarrow w + \eta (y_i - f(x_i)) \Phi(x_i) \]

Potential Function algorithm
\[\alpha_i \leftarrow \alpha_i + y_i \quad \text{if } y_i f(x_i) > 0 \]
(Aizerman et al 1964)

Dual minover
\[\alpha_i \leftarrow \alpha_i + y_i \quad \text{for min } y_i f(x_i) \]

Dual LMS
\[\alpha_i \leftarrow \alpha_i + \eta (y_i - f(x_i)) \]

Exercise: Gradient Descent

- Linear discriminant \(f(x) = \sum w_j x_j \)
- Functional margin \(z = y f(x), y = \pm 1 \)
- Compute \(\frac{\partial z}{\partial w_j} \)
- Derive the learning rules \(\Delta w_j = -\eta \frac{\partial L}{\partial w_j} \)
 corresponding to the following loss functions:
 - square loss \((1 - z)^2 \)
 - SVC loss \(\max(0, 1-z) \)
 - Adaboost loss \(e^{-z} \)
 - Perceptron loss \(\max(0, -z) \)
 - logistic loss \(\log(1 + e^z) \)

Exercise: Dual Algorithms

- From the derive the \(\Delta w_j \) derive the \(\Delta w \)
- \(w = \sum \alpha_i x_i \)
- From the \(\Delta w \), derive the \(\Delta \alpha \) of the dual algorithms.

Exercise: Linear Algebra

- Prove that if \(X \) is of rank \(r \), \(X^T X \) and \(XX^T \) have the same rank.
- Show that \(X^T X \) and \(XX^T \) have only positive eigenvalues.