Lecture 3:
Shrinkage
Isabelle Guyon
guyoni@inf.ethz.ch

| References |
| :---: | :---: |
| Structural risk minimization for
 character recognition
 Isabelle Guyon et al. |
| $\underline{\text { http://clopinet.com/isabelle/Papers/sr }}$$\underline{\text { m.ps.Z }}$
 Kernel Ridge Regression
 Isabelle Guyon |
| $\underline{\text { http://clopinet.com/isabelle/Projects/ }}$ |
| ETH/KernelRidge.pdf |

Ockham's Razor
- Principle proposed by William of Ockham
in the fourteenth century: "Pluralitas non
est ponenda sine neccesitate".
- Of two theories providing similarly good
predictions, prefer the simplest one.
- Shave off unnecessary parameters of
your models.

The Power of Amnesia

- The human brain is made out of billions of cells or Neurons, which are highly interconnected by synapses.
- Exposure to enriched environments with extra sensory and social stimulation enhances the connectivity of the synapses, but children and adolescents can lose them up to 20 million per day.

Weight Decay
$w_{j} \leftarrow w_{j}+y_{i} x_{i j} \quad$ Hebb's rule
$w_{j} \leftarrow(1-\lambda) w_{j}+y_{i} x_{i j}$ Weigh decay $\lambda \in[0,1]$, decay parameter

	Conventions
	training data matrix, $\mathrm{i}=1: \mathrm{m}, \mathrm{j}=1: \mathrm{n}$ matrix line, training pattern i test pattern, dim n target value of pattern i target value of test pattern weight vector, $\operatorname{dim} \mathrm{n}$ weight vector, dim m

Matrix Notations	
$w_{\mathrm{i}}=\sum_{\mathrm{i}} y_{\mathrm{i}} \mathrm{x}_{\mathrm{ij}}$ $f(\mathbf{x})=\sum_{\mathrm{j}} \mathrm{w}_{\mathrm{j}} \mathrm{x}_{\mathrm{j}}$	$\begin{array}{ll} \mathbf{w}=\mathbf{y}^{\top} \mathbf{X} & \mathbf{w}^{\top}=X^{\top} \mathbf{y} \\ (1, n)=(1, m)(m, n) & (n, 1)=(n, m)(m, 1) \end{array}$ $f(\mathbf{x})=\mathbf{x} \mathbf{w}^{\top}=\mathbf{w} \mathbf{x}^{\top}$

Linear Regression
- What we want: $\Sigma_{\mathrm{j}} \mathrm{w}_{\mathrm{j}} \mathrm{x}_{\mathrm{ij}}=\mathrm{y}_{\mathrm{i}}$ for all examples $\mathrm{i}=1 \ldots \mathrm{~m} \quad\left(\mathrm{~b}=\mathrm{w}_{0}\right)$ or for classification, $\mathrm{y}_{\mathrm{i}}= \pm 1, \operatorname{sign}\left(\sum_{\mathrm{j}} \mathrm{w}_{\mathrm{j}} \mathrm{x}_{\mathrm{ij}}\right)=\mathrm{y}_{\mathrm{i}}$ - Solve: $X w^{\top}=y$

Regression: $\mathrm{m}>\mathrm{n}$	
- Solve: $X \mathbf{w}^{\top}=\mathbf{y}$ $(m, n)(n, 1)=(m, 1)$ - Normal equations $\underset{(n, m)(m, n)(n, 1)}{\mathbf{X}^{\top} X} \underset{=(n, m)(m, 1)}{\mathbf{w}^{\top}}=\underset{\left(X^{\top}\right.}{X^{\top}}$ - Solution: $\mathbf{w}^{\top}=\left(X^{\top} X\right)^{-1} X^{\top} \mathbf{y}$	$\operatorname{rank}(\mathrm{X}) \leq \min (\mathrm{n}, \mathrm{m})$ assume $\operatorname{rank}(X)=n$ implies $\operatorname{rank}\left(X^{\top} X\right)=n$ $X^{\top} \mathrm{X}$ is invertible

The pseudo-inverse solution is optimal in the least-square sense:
$\min _{\mathbf{w}}\left\|\mathbf{y}-X \mathbf{w}^{\top}\right\|^{2}=\left\|\left(I-X X^{+}\right) \mathbf{y}\right\|^{2}$

Gradient Descent
$L_{i}=\left(\mathbf{x}_{i} \mathbf{w}^{\top}-y_{i}\right)^{2}$
- Sum of squares:
$\begin{aligned} R & =\Sigma_{i}\left(\mathbf{x}_{i} \mathbf{w}^{\top}-y_{i}\right)^{2} \\ & =\left\\|X \mathbf{w}^{\top}-\mathbf{y}\right\\|^{2} \\ & =\mathbf{w} X^{\top} X \mathbf{w}^{\top}-2 \mathbf{w} X^{\top} \mathbf{y}+\mathbf{y}^{\top} \mathbf{y} \end{aligned}$
$\nabla_{w} \mathrm{R}=2\left(\mathrm{X}^{\top} \mathbf{X w}^{\top}-\mathrm{X}^{\top} \mathbf{y}\right)$

Regularization

- Normal equations:

$$
\begin{aligned}
& X^{\top} \quad \mathbf{X} \mathbf{w}^{\top}=X^{\top} \mathbf{y} \\
& (n, m)(m, n)(n, 1)=(n, m)(m, 1)
\end{aligned}
$$

- Case $m<n$ (interpolation), $\operatorname{rank}(X) \leq m<n$, matrix $X^{\top} X$ singular.
- Replace $X^{\top} X$ by $\left(X^{\top} X+\lambda l\right) \quad \lambda>0$
- Solution:

$\mathbf{w}^{\top}=\left(X^{\top} X+\lambda l\right)^{-1} X^{\top} \mathbf{y}$
Regularized inverse
$(n, 1) \quad(n, m)(m, n)(n, n)(n, m)(m, 1)$

Why it works
- Diagonalization:
$X^{\top} X=U \quad U^{\top}$
U orthogonal matrix of eigenvectors (UUT=l)
D diagonal matrix of eigenvalues
Singularity: someeigenvalues are zero.
- Regularization:
$X^{\top} X+\lambda l=U(D+\lambda l) U^{\top} \quad \lambda>0$
no more zero eigenvalue.

Mechanical Interpretation

- Quadratic form:
$R=\left\|X w^{\top}-\mathbf{y}\right\|^{2}+\lambda\|\mathbf{w}\|^{2}$
- One dimension:

$$
R=p\left(w-w_{0}\right)^{2}+\lambda w^{2}
$$

- Two dimensions:
?

Principal Component Analysis

$\mathbf{u}^{\prime}{ }_{k}$

- Problem: Construct features that are linear combinations of the original features, such that the reconstructed patterns are as close as possible to the original in the least square sense.
- $\mathbf{f}_{k}^{\prime}=X \mathbf{u}_{k} \quad$ linear combinations of columns of X
- $\mathbf{x}_{i}{ }^{\prime \prime}=\mathbf{x}_{i}{ }^{\prime} U^{\top}=\Sigma_{k} x^{\prime}{ }_{i k} \mathbf{u}_{k} \quad$ reconstructed pattern

PCA Solution
- $X^{\prime}=X U$
- $X^{\prime \prime}=X U^{\top}$
$\cdot X^{\prime \prime}=X U U^{\top}$
- min $U\left\\|X-X U U^{\top}\right\\|^{2}$
- Can be brought back to solving and
eigenvalue problem: $X^{\top} X=U D U^{\top} i . e . X^{\top} T X^{\prime}=D$
- Compare:
Regularization $X^{\top} X+\lambda I=U(D+\lambda 1) U^{\top}$
PCA: Remove the dimensions with smallest
eigenvalues.

Kernel "Trick" (m<n)	
- Solve: - Assume:	$X w^{\top}=\mathbf{y}$
	$\mathbf{w}=\Sigma_{i} \alpha_{i} \mathbf{x}_{\mathrm{i}}=\alpha^{\top} \mathrm{X}$
	${ }_{(1, n)} \quad y^{(1, m)(m, n)}$
- Solve instead:	$\chi X^{\top} \alpha=\mathbf{y}$
	$y^{m, n)(n, m)(m, 1)=(m, 1)}$ Full rank (m, m) matrix
- Solution:	$\begin{aligned} & \alpha=\left(X X^{\top}\right)^{-1} \mathbf{y} \\ & \mathbf{w}^{\top}=X^{\top}\left(X X^{\top}\right)^{-1} \mathbf{y} \end{aligned}$
	X^{+}

Kernel Ridge Regression	
- $\Xi=\Phi(\mathrm{X})$	
- Solve:	$\pm w^{\top}=\mathbf{y}$
- Assume:	$\mathbf{w}=\Sigma_{\mathrm{i}} \alpha_{\mathrm{i}} \xi_{\mathrm{i}}=\alpha^{\top} \Xi$
	${ }^{(1, N)} \quad{ }^{(1, m)(m, N)}$
- Solve instead:	$\chi^{\Sigma} \Xi^{\top} \alpha=\mathbf{y}$
	$(\mathrm{ym}, n(n, m)(m, 1)=(m, 1)$
	(m, m) kernel matrix K
- Solution: - Regularizatio	$\alpha=K^{-1} \mathbf{y}$

$\mathrm{MAP}=\mathrm{RRM}$
- Maximum A Posteriori (MAP): Negative log likelihood Negative log prior $=$ Empirical risk $\mathrm{R}[\mathrm{f}] \quad=$ Regularizer $\Omega[\mathrm{f}]$ - Regularized Risk Minimization (RRM): $f=\operatorname{argmin} R[f]+\Omega[f]$

Priors and Bayesian Learning
- Double random process: - Draw a target function f in a family of functions $\{f\}$ - Draw the data pairs ($\mathbf{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}=\mathrm{f}\left(\mathbf{x}_{\mathrm{i}}\right)+$ noise $)$ - The distribution of f is called the "prior" $P(f)$. - Our revised opinion about f once we see the data is the "posterior" $\mathrm{P}(\mathrm{f} \mid \mathrm{D})$. - Bayesian "learning": $P(y \mid x, D) \alpha \int P(y \mid x, D, f) d P(f \mid D)$ - MAP: $\begin{aligned} f & =\operatorname{argmax} P(f \mid D) \\ & =\operatorname{argmax} P(D \mid f) P(f) \end{aligned}$

Example: Gaussian Prior
• Linear model:
$f(\mathbf{x})=\mathbf{x} \mathbf{w}^{\top}$

- Square loss \Leftrightarrow Gaussian noise:
$P(D \mid f)=\exp -\left\|X \mathbf{w}^{\top}-\mathbf{y}\right\|^{2} / \sigma^{2}$
$R[f]=-\log P(D \mid f) \sim\left\|X \mathbf{w}^{\top}-\mathbf{y}\right\|^{2}$
- Weight decay $\Leftrightarrow G a u s s i a n$ prior:
$P(f)=\exp -\lambda\|\mathbf{w}\|^{2}$
$\Omega[f]=-\log P(f)=\lambda\|\mathbf{w}\|^{2}$

Conclusion
- Weight decay is a means of avoiding
"overfitting" that is justifiable from many
perspectives:
- Ockham's razor
- Synaptic decay
- Regularization
- Gaussian prior on the weights
- Structural risk minimization
- It works for linear models, kernel methods,
and neural networks.
- It can be combined with various loss
functions.

Homework 3:

1) Same data and software ashomework 2.
2) Create a heatmap of the 100 top ranking features you selected.
3) Make a scatter plot of the 3 top ranking features you selected.
4) Email the result zip file with the figures to guyoni@inf.ethz.ch with subject "Homework3" no later than:
Tuesday November 15th.

Risk Minimization
- Learning problem: find the best function $f(\mathbf{x} ; \alpha)$ minimizing the risk functional $R[f]=\int \underbrace{L(f(\mathbf{x} ; \alpha), y)}_{\text {loss function }} d \underbrace{(x, y)}_{\text {unknown distribution }}$ - Examples are given: $\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots\left(\mathbf{x}_{\mathrm{m}}, y_{m}\right)$

Loss Functions

Kernel "Trick"
- $f(\mathbf{x})=\sum_{i} \alpha_{i} k\left(\mathbf{x}_{\mathrm{i}}, \mathbf{x}\right)$ - $k\left(\mathbf{x}_{\mathrm{i}}, \mathbf{x}\right)=\Phi\left(\mathbf{x}_{\mathrm{i}}\right) \bullet \Phi(\mathbf{x})$ §Dual forms - $f(\mathbf{x})=w \bullet \Phi(\mathbf{x})$ - $\mathbf{w}=\sum_{\mathrm{i}} \boldsymbol{\alpha}_{\mathrm{i}} \Phi\left(\mathbf{x}_{\mathrm{i}}\right)$

What is a Kernel?			
A kernel is a dot product in some feature space: $\mathrm{k}(\mathbf{s}, \mathbf{t})=\Phi(\mathbf{s}) \bullet \Phi(\mathbf{t})$			
- Examples:			
- $\mathrm{k}(\mathbf{s}, \mathbf{t})=\exp \left(-\\|\mathbf{s}-\mathbf{t}\\|^{2} / \mathbf{\sigma}^{2}\right)$ Gaussian kernel			
- $k(\mathbf{s}, \mathbf{t})=1 /\\|\mathbf{s} \mathbf{- t}\\| \quad$ Potential function			
- $k(\mathbf{s}, \mathbf{t})=(\mathbf{s} \bullet \mathbf{t})^{q}$ Potynomial kernel 			
$\mathrm{k}(\mathbf{s}, \mathrm{t}) \quad \Phi(\mathbf{s})$	$\Phi(\mathbf{t})$		

Simple Kernel Methods	
$\begin{aligned} & \mathrm{f}(\mathbf{x})=\mathbf{w} \bullet \Phi(\mathbf{x}) \\ & \mathbf{w}=\sum_{\mathrm{i}} \alpha_{\mathrm{i}} \Phi\left(\mathbf{x}_{\mathrm{i}}\right) \end{aligned}$ Perceptron algorithm $\mathbf{w} \leftarrow \mathbf{w}+\mathrm{y}_{\mathrm{i}} \Phi\left(\mathbf{x}_{\mathrm{i}}\right) \quad$ if $\mathrm{y}_{\mathrm{i}} \mathrm{f}\left(\mathbf{x}_{\mathrm{i}}\right)<0$ (Rosenblatt 1958) Minover (optimum margin) $\mathbf{w} \leftarrow \mathbf{w}+\mathrm{y}_{\mathrm{i}} \Phi\left(\mathbf{x}_{\mathrm{i}}\right)$ for $\min \mathrm{y}_{\mathrm{i}}\left(\mathbf{x}_{\mathrm{i}}\right)$ (Krauth-Mézard 1987) LMS regression $\mathbf{w} \leftarrow \mathbf{w}+\eta\left(\mathrm{y}_{\mathrm{i}}-\mathrm{f}\left(\mathbf{x}_{\mathrm{i}}\right)\right) \Phi\left(\mathbf{x}_{\mathrm{i}}\right)$	$\begin{aligned} & \mathrm{f}(\mathbf{x})=\sum_{\mathrm{i}} \alpha_{\mathrm{i}} \mathrm{~K}\left(\mathbf{x}_{\mathrm{i}}, \mathbf{x}\right) \\ & \mathrm{k}\left(\mathbf{x}_{\mathrm{i}}, \mathbf{x}\right)=\Phi\left(\mathbf{x}_{\mathrm{i}}\right) . \Phi(\mathbf{x}) \end{aligned}$ Potential Function algorithm $\alpha_{\mathrm{i}} \leftarrow \alpha_{\mathrm{i}}+\mathrm{y}_{\mathrm{i}} \quad \text { if } \mathrm{y}_{\mathrm{i}}\left(\mathrm{f} \mathbf{x}_{\mathrm{i}}\right)<0$ (Aizerman et al 1964) Dual minover $\alpha_{i} \leftarrow \alpha_{i}+y_{i} \quad$ for $\min y_{i} f\left(\mathbf{x}_{i}\right)$ (ancestor of SVM 1992, similar to kernel Adatron, 1998, Dual LMS and SMO, 1999) $\alpha_{\mathrm{i}} \leftarrow \alpha_{\mathrm{i}}+\eta\left(\mathrm{y}_{\mathrm{i}}-\mathrm{f}\left(\mathbf{x}_{\mathrm{i}}\right)\right)$

Exercise: Dual Algorithms

- From the derive the Δw_{j} derive the $\Delta \mathbf{w}$
- $\mathbf{w}=\Sigma_{i} \alpha_{i} \mathbf{x}_{i}$
- From the $\Delta \mathbf{w}$, derive the $\Delta \alpha_{i}$ of the dual algorithms.

Exercise: Gradient Descent

- Linear discriminant $f(\mathbf{x})=\Sigma_{j} w_{j} x_{j}$
- Functional margin $z=y f(\mathbf{x}), y= \pm 1$
- Compute $\partial z / \partial w_{j}$
- Derive the learning rules $\Delta \mathrm{w}_{\mathrm{j}}=-\eta \partial \mathrm{L} / \partial \mathrm{w}_{\mathrm{j}}$ corresponding to the following loss functions:

square loss $(1-\mathrm{z})^{2}$	SVC loss $\max (0,1-\mathrm{z})$	Adaboost loss $\mathrm{e}^{-\mathrm{z}}$
Perceptron loss	logistic loss	
$\max (0,-\mathrm{z})$	$\log \left(1+\mathrm{e}^{-\mathrm{z}}\right)$	

Exercise: Linear Algebra

- Prove that if X is of rank $r, X^{\top} X$ and $X X^{\top}$ have the same rank.
- Show that $X^{\top} X$ and $X X^{\top}$ have only positive eigenvalues.

