Lecture 5: Feature Selection Filters

Isabelle Guyon guyoni@inf.ethz.ch

Part I: Review of past lectures

We have learned about...

- How to jugulate overfitting by favoring simpler solutions
- The need to reduce dimensionality/select features when n>>m because even simple models can overfit (curse of dimensionality)
- Dot products are important in machine learning, they are the basis of several:
 - Machine architectures (linear models, kernel methods, neural networks),
 - Learning algorithms (Hebb's rule, gradient descent),
 - Preprocessing (filter banks and convolutional filters)

Curse of Dimensionality

• n>m, the linear set of equations

$$X \mathbf{w}^T = \mathbf{y}$$
 $(m,n)(n,1) = (m,1)$

has an infinite number of solutions.

- The pseudo-inverse solution is the leastsquare solution of minimum norm ||w||.
- · Better predictors can sometimes be achieved with larger penalties on ||w ||.

All Purpose Dot Products

- We all know the "regular" dot product (or scalar product) in a Euclidean space $\mathbf{x} \bullet \mathbf{x}' = \Sigma_i \mathbf{x}_i \mathbf{x}'_i$
- More generally, a dot product on a vector space V is a positive symmetric bilinear form:

$$<.,.>: V \times V \rightarrow R$$

 $(\mathbf{x}, \mathbf{x}') \rightarrow <\mathbf{x}, \mathbf{x}'>$

Symmetry: $\langle \mathbf{x}, \mathbf{x}' \rangle = \langle \mathbf{x}', \mathbf{x} \rangle$

Bilinearity: $\langle \lambda \mathbf{x}, \mathbf{x'} \rangle = \lambda \langle \mathbf{x}, \mathbf{x'} \rangle$

 $\langle \mathbf{x}, \lambda \mathbf{x'} \rangle = \lambda \langle \mathbf{x}, \mathbf{x'} \rangle$

Positivity: $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$ with equality only for $\mathbf{x}=0$

Examples of Dot Products

•
$$k(x, x') = x \cdot x'$$

Linear kernel

•
$$k(\mathbf{x}, \mathbf{x}') = \exp(-\gamma ||\mathbf{x} - \mathbf{x}'||^2)$$
 Gaussian kernel

•
$$k(x, x') = 1/||x-x'||$$

Potential function

•
$$k(\mathbf{x}, \mathbf{x}') = (\mathbf{x} \cdot \mathbf{x}')^q$$

Polynomial kernel

$$([x_1; x_2] \bullet [x_1', x_2'])^2 = [x_1^2, x_2^2, \sqrt{2x_1}x_2] \bullet [x_1', x_2', x_2'] \times [x_1', x_2']$$

k(x, x')

 $f(\mathbf{x})$

A kernel is a dot product in some feature space: $k(\mathbf{x}, \mathbf{x}') = f(\mathbf{x}) \bullet f(\mathbf{x}')$

Fancier Dot Products

•
$$\mathbf{x} \bullet \mathbf{x}' = \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}'_{i}$$

•
$$(\mathbf{x} \bullet \mathbf{x}')^q = \sum_{j=1}^N \phi_j(\mathbf{x}) \phi_j(\mathbf{x}')$$

•
$$\exp(-\gamma ||\mathbf{x} - \mathbf{x}'||^2) = \sum_{j=1}^{\infty} \phi(\mathbf{x}) \phi(\mathbf{x}')$$

•
$$k(x, x') = \int \phi(x, t) \phi(x', t) dt$$

Architectures

- Linear model: $f(x) = w \cdot f(x)$
- · Kernel method:

$$f(\boldsymbol{x}) = \Sigma_i \, \frac{\alpha_i}{\alpha_i} \, k(\boldsymbol{x}_i, \, \boldsymbol{x})$$

$$k(\mathbf{x}_i, \mathbf{x}) = f(\mathbf{x}_i) \cdot f(\mathbf{x})$$

(kernel "trick" $\mathbf{w} = \Sigma_i \, \alpha_i \, f(\mathbf{x}_i)$

• Neural nets: network of linear threshold units.

Learning Algorithms

• $w_j \leftarrow w_j + y_i x_{ij}$

 $w_j = \Sigma_i \ y_i \ x_{ij} = \boldsymbol{y} \bullet \ \boldsymbol{f}_j$

 $\mathbf{y} = \{y_i\}$ Hebb's rule

if $\mathbf{f}_i \leftarrow (\mathbf{f}_i - \mu_i)/\sigma_i$ Pearson correlation

• $w_i = \Sigma_i \alpha_i \phi(x_i) = \mathbf{a} \bullet f_i$ Other rules

Feature Construction

Example of one dimensional signal x(t) or x_i :

• Convolution:

$$\phi(s) = \int x(t) K(s-t) dt$$

$$\phi_{k} = \sum_{j=0}^{p-1} x_{j} \quad K_{k-j}$$

$$\begin{split} &\varphi_k = \Sigma_{j=0}^{\,p-1} x_j \quad K_{k-j} \\ &\bullet \mbox{ Fourier and other filter bank transforms:} \end{split}$$

$$\phi(s) = \int x(t) K(s, t) dt$$

e.g.
$$K(s, t) = exp(-ist)$$

Orthogonality: $\int K(s, t) K(s', t) dt = \delta_{ss'}$

Convolutional Neural Nets

 $\underline{http://yann.lecun.com/exdb/lenet/}$

Part II: Filters for feature selection

A big search problem

- <u>Definition of distracter</u>: if tweaked, no change in input/output relationship for any position of all other knobs.
- "Exhaustive search": Check all knob positions (see: factorial design). One knob at a time does not work if one variable alone does not control the output
- <u>Experimental design</u>: In the continuous case we need efficient experimental design or "query" strategies.
- <u>Sub-optimal/bogus designs</u>: false positive relevance (e.g. confounded factors) and false negative relevance (e.g. joint effect unexplored.)

Making Predictions

- Goal: find the smallest subset of variables, which provide at least as good predictions as all the variable.
- No uniqueness of the solution.
- Relevance vs. usefulness:
 - Relevance does not imply usefulness.
 - Usefulness does not imply relevance.

Correlation and Causality

- Correlation does not mean causality.
- Direction:

$$\begin{array}{c} X \to Y \text{ or } X \leftarrow Y \\ P(X, Y) = P(Y|X)P(X) = P(X|Y)P(Y) \\ \text{Predictive model} & \text{Generative model} \end{array}$$

• Hidden common cause:

Inference of Causality

- Need controllable variables and experimental design.
- Machine learning case:
 - "Canned data", can only observe some variables, i.e. no controllable variables, some may be unobservable.
 - Finite sample size: no access to the "real" data distribution.

Defining "Relevance"

Variable Dependence

• Independence:

$$P(X, Y) = P(X) P(Y)$$

• Measure of dependence:

$$MI(X, Y) = \int P(X,Y) \log \frac{P(X,Y)}{P(X)P(Y)} dX dY$$
$$= KL(P(X,Y) || P(X)P(Y))$$

More than 2 variables...

• Surely irrelevant feature:

$$P(X_i, Y | X^{-i}) = P(X_i | X^{-i})P(Y | X^{-i})$$

for all assignment of values to X-i

- Define conditional mutual information.
- Average over assignment of values to X-i:

$$EMI(X_i, Y) = \int_{X_i} P(X^{-i}) MI(X_i, Y | X^{-i}) dX^{-i}$$

Elimination of "Distracters"

- Rank features X_i according to an empirical estimate of EMI(X_i, Y).
- Eliminate all the features such that:

$$EMI(X_i, Y) \leq \varepsilon$$

for a chosen $\epsilon \geq 0$.

• Next lecture: choose ϵ to have sufficient confidence that X_i is a distracter.

Ø

Are we done?

- MI(X_i, Y) difficult to estimate:
 - we need to "regularize", relate on distribution first moments or smooth the distribution.
- EMI(X_i, Y) even worse:
 - Super overfitting problem.
 - We may not be able to estimate the joint distribution of more than 3 variables.
 - We should anyways not consider all possible subsets.
- MI is NOT the best criterion:
 - If the goal is not density estimation but classification or regression: too many features will be retained.

Non-Binary Case

- Create histograms, but the number of counts in each bin may be too low to get accurate results: k variables examined together, v values per variable, v^k bins! ... and only m examples to fill them.
- Estimate the densities with non-parametric methods (e.g. Parzen windows).
- Make simplifying assumptions about the distribution (e.g. Normal).

• For classification, x₂ is not useful • For density estimation, x₂ is useful

No, we are not done...

We will:

- 1) Definine ranking criteria using second order moments (variance).
- 2) Search feature space with greedy strategies: creating nested subsets of features by forward selection.

Single Feature Relevance: Simple Criteria

Pearson Correlation

• R =
$$\frac{\sigma_{xy}^2}{\sigma_x \sigma_y}$$

• R = (1/m)
$$\frac{\sum_{i} (x_{i} - \mu_{x}) (y_{i} - \mu_{y})}{\sigma_{x} \sigma_{y}}$$

• R ~ \boldsymbol{x} • \boldsymbol{y} after "standardization" $\boldsymbol{x} \leftarrow (\boldsymbol{x} - \boldsymbol{\mu}_x) / \sigma_x$

Fisher Score and Regression

Eliminating Redundancy: Conditional Relevance

Forward Selection with MI

Fleuret, 2004. Practical only for binary features.

Select a first feature X_{?(1)}with maximum MI with the target.

• For each remaining feature X_i and each previously selected feature $X_{2(j)}$, compute the conditional mutual information:

 $\mathsf{CMI}(\mathsf{X}_{\mathsf{i}},\mathsf{Y}\,|\,\mathsf{X}_{?(\mathsf{j})}) = \sum_{\mathsf{X}?(\mathsf{j})} \mathsf{P}(\mathsf{X}_{?(\mathsf{j})}) \; \mathsf{MI}(\mathsf{X}_{\mathsf{i}},\;\mathsf{Y}\;|\;\mathsf{X}_{?(\mathsf{j})})$

Select the feature with maximum CMI.

Forward Selection with GS

Stoppiglia, 2002. Gram-Schmidt orthogonalization.

- Project X_i and the target Y on the null space of the features already selected
- Compute the cosine of X_i with the target in the projection

Select the feature $X_{2(k)}$ with maximum cosine with the target in the projection.

Homework 5

- Complete homework 4 and train a classifier using the new feature representation you chose or implemented.
- Make a submission to the website of the challenge to get your test set score: http://www.nipsfsc.ecs.soton.ac.uk/
- Email the result zip file of the results to guyoni @inf.ethz.ch with subject "Homework5" no later than: Tuesday November 29th.

Match Filters

Implementation:

One "match_filter" object that takes a "filter_bank" object as an argument.

Examples:

- hadamard_bank: Hadamard transform, similar to the Fourier transform, but has discrete valued orthogonal basis functions.
- pca_bank: uses the first "f_max" principal components as a filter bank.
- kmeans_bank: uses "f_max" cluster centers as a filter bank.

Principal Components

Filter bank obtained for 25 components

my_bank=pca_bank('f_max=25');
my_prepro=match_filter(my_bank);
[d, my_prepro]=train(my_prepro, D.train);
show(my_prepro);

Kmeans Clustering

Filter bank obtained for 36 clusters

my_bank=kmeans_bank('f_max=36');
my_prepro=match_filter(my_bank);
[d, my_prepro]=train(my_prepro, D.train);
show(my_prepro);

Transform | Mark | Case |

Convolutions

Implementation:

One "convolve" object that takes a "xxx_ker" object as arg.

Examples:

- gauss_ker: Gaussian kernel. Four parameters: dim1, dim2 (kernel size) and sigma1, sigma2 (Gaussian width). The sigmas are scaled automatically to 0.2*dim if only the dimensions are given. It is better to chosen odd numbers for the kernel dimension.
- exp_ker: Exponential kernel. Same parameters.
- -chain({convolve(gauss_ker({'dim1=5', 'dim2=1'})), convolve(gauss_ker({'dim1=1', 'dim2=5'}))}) equivalent but faster than convolve(gauss_ker({'dim1=5', 'dim2=5'}))

Best so far...

pixelGisette_exp_conv_p4_s0.1 test_BER=0.91%

Tips to outperfom baselineGisette

```
baselineGisette (testBER=1.8%. feat=20%)
my_classif=svc({'coef0=1', 'degree=3',
    'gamma=0', 'shrinkage=1'});
my_model=chain({normalize, s2n('f_max=1000'),
    my_classif});

D.alltrain=data([D.train.X;D.valid.X],
    [D.train.Y;D.valid.Y]);
cv_model=cv(my_model, {'folds=5',
    'store_all=0'});
Result=train(cv_model, D.alltrain);
OutX=[]; OutY=[]; for k=1:5, OutX=[OutX;
    Result.child{k}.X]; OutY=[OutY;
    Result.child{k}.Y]; end
CV_BER=balanced_errate(OutX, OutY);
```

Keep good records!

- Keep your latest and greatest model and results (the zip file).
- Document what you did.

Class requirements:

- One complete entry (5 datasets) on the challenge website.
- A poster explaining what you did.

