Lecture 5:
Feature Selection Filters

Isabelle Guyon
guyoni@inf.ethz.ch

Part I:
Review of past lectures

We have learned about...

Polynomial Regression

- How to jugulate overfitting by favoring simpler
solutions
- The need to reduce dimensionality/select
features when n>>m because even simple
models can overfit (curse of dimensionality)
- Dot products are important in machine
learning, they are the basis of several:
- Machine architectures (linear models, kernel
methods, neural networks),
- Learning algorithms (Hebb's rule, gradient
descent),

- Preprocessing (filter banks and convolutional
filters)

d=10, r=1e+008




Curse of Dimensionality

All Purpose Dot Products

* n>m, the linear set of equations
X wl=y
(m,n)(n,1) = (m,1)
has an infinite number of solutions.

¢ The pseudo-inverse solution is the least-
square solution of minimum norm |jw ||.

« Better predictors can sometimes be achieved

with larger penalties on |w ||.
=
2

W1

* We al know the "regular" dot product (or scalar

product) in a Euclidean space x - X' = §; x; X

* More generally, adot product on a vector space V
isapositive symmetric bilinear form:
<, >V’ V®R
(X, X") ® <x, x>

Symmetry: <x, x'> = <x', x>
Bilinearity: <Ix, x'> =1 <x, x'>
<X, Ix'>=1 <x, x'>
Positivity: <x, x> 3 0 with equality only for x=0

Examples of Dot Products

Fancier Dot Products

e k(x,x)= x- X Linear kernel
* k(x, x’) = exp(-d|x—x'||?2) Gaussian kernel
o k(x, x") = 1/||Ix-x’|| Potential function

o k(x,x")=K - x") _ Polynomial kernel

(X dper ol = Dy 22 00%0] - X1 &2 (O X ]
k(x,Xx") f(x) f(x')
A kernel is a dot product in some feature space:
k(x,x") =f(x) - f(x")

y n

* X - X'= 5 XX

]

. (- = S ) ()
« exp(-dx—x'IP) = Sy () ,(x")

o k(x, x’) = of(x, t) f(x’, t) dt




Architectures

Learning Algorithms

« Linear model: f(x) =w e f(x) (orw «Xx)
« Kernel method:

f(x) = S; a; k(x;, X)
k(xi, x) = f(x;) « f(x)

(kernel “trick” w = §; a; f(x;)

* Neural nets: network of linear threshold units.

W L - 1]
m X={%;}
XI
a f y ={y;}
S Wi WY X Hebb’s rule
W=Syx;=yef iffi~ 6-ms
Pearson correlation

*w=Sa fi(x)=acf

j Otherrules

Feature Construction

Convolutional Neural Nets

Example of one dimensional signal x(t) or x;:

« Convolution:
f(s) = O x(t) K(s-t) dt
fi=SE% Ky
« Fourier and other filter bank transforms:
f(s) = ox(t) K(s, t) dt
e.0. K(s, t) = exptist)
Orthogonality: 0K(s, t) K(s',t)dt = dg

10 output units
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http://yann.lecun.com/exdb/lenet/




Relevance to the concept

Part I1:
Filters for feature selection

Output
o

System
or “Concept”

CHIN ®

1- Eliminate distracters (irrelevant variables)

Objectives
2 - Rank (combinations of ) relevant variables

A big search problem

Reverse Engineering

Definition of distracter: if tweaked, no change
in input/output relationship for any position of all
other knobs.

“Exhaustive search”: Check all knob positions
(see: factorial design). One knob at a time does
not work if one variable alone does not control the
output.

Experimental design: In the continuous case
we need efficient experimental design or “query”
strategies.

Sub-optimal/bogus designs: false positive
relevance (e.g. confounded factors) and false

negative relevance (e.g. joint effect unexplored.)

Outprjt

Uncontrollable

X variables (some
N unobservable;

maybe some

ioes =

Controllable variables




Making Predictions Redundant: Relevant but “Useless”
3
X
» Goal: find the smallest subset of
variables, which provide at least as
good predictions as all the variable. o o4
* No unigueness of the solution. ; ¢
o
8 8
* Relevance vs. usefulness: 8 *®
— Relevance does not imply usefulness. [*] 000
— Usefulness does not imply relevance. °L° -
000 @ G000 X3
Real data: Mass spectrometry Explanation:
ﬂ ”,',ﬁ::’:" Wl , } l
S IMITHE N |
f | \ | .| ‘\ :
‘Q‘ ”:"‘;‘k 20} \‘\7?1 \; “——,'-,'/'\.'—/\"‘ /~:"_ V} g
o Jl F1: The pesk of interest
et e F2: The best local estimate of the basdline.




Useful but “Irrelevant”

Correlation and Causality

\

e Correlation does not mean causality.
« Direction:
X® YorX—Y
P(X, Y) = P(Y|X)P(X) = P(X]Y)P(Y)
Predictivemodel  Generative model

* Hidden common cause:

NS
Z

Inf €0 Ly

* Need controllable variables and
experimental design.

* Machine learning case:
—“Canned data”, can only observe some
variables, i.e. no controllable variables,
some may be unobservable.

— Finite sample size: no access to the “real”
data distribution.

Defining “Relevance”




Variable Dependence

More than 2 variables...

* Independence:
P(X, Y) = P(X) P(Y)
» Measure of dependence:

PXY) dx dy

MI(X, Y) = OP(X,Y) log POOP(Y)

= KL( P(X,Y) || POXP(Y) )

e Surely irrelevant feature:

P(%, Y IX1) = P(X [X)P(Y [XT)

for all assignment of values to X'
 Define conditional mutual information.
« Average over assignment of values to X ':

EMI(X, Y ) = Q. POXT) MI(X,, Y [X1) dX-i

Elimination of “Distracters”

Are we done?

» Rank features X according to an
empirical estimate of EMI(X;, Y).
 Eliminate all the features such that:
EMI(X, Y) £e
for a chosen e3 0.
» Next lecture: choose eto have sufficient
confidence that X is a distracter.

« MI(X;, Y) difficult to estimate:
— we need to “regularize”, relate on distribution first
moments or smooth the distribution.

* EMI(X;_Y) even worse:
— Super overfitting problem.
+ We may not be able to estimate the joint distribution of
more than 3 variables.
« We should anyways not consider all possible subsets.

* Ml is NOT the best criterion:

— If the goal is not density estimation but classification
or regression: too many features will be retained.




MI Estimation

Non-Binary Case

pxy=[ 4/16, 6/16; 5/16,

1/ 16]

px=sum( pxy)
py=sum( pxy, 2)
pXpy=(py* px)
M =sun{sun( pxy. *| 0g2( pxy./ pxpy)))

« Create histograms, but the number of counts
in each bin may be too low to get accurate
results: k variables examined together, v

pxy = [0.2500  0.3750 values per variable, vk bins! ... and only m
® examples to fill them.
px.= 0.5625  0.4375 « Estimate the densities with non-parametric
Py = 0.6250 methods (e.g. Parzen windows).
0-3750 * Make simplifying assumptions about the
prpy = 03818 0.2734 distribution (e.g. Normal)
v 0.2109 0.1641 1S g '
Possible normalization by (H(X)+H(Y))/2 M = 0.1381
What Objective? No, we are not done...

 For classification, x, is not useful
 For density estimation, x, is useful
|

) |
X2

We will:

1) Definine ranking criteria using second
order moments (variance).

2) Search feature space with greedy

strategies: creating nested subsets of
features by forward selection.




Pearson Correlation

Single Feature Relevance:
Simple Criteria

e Rz Xy
Sy Sy
e R=@1m) S, sy

e R~X -y after “standardization”X = (X-m)/S,

Correlation and Linearity

Correlation and M1

For the least-square linear regression, R2=1- .2/ Sy2

Residual variance: S r2

>

__P_]_r__IL_J__L___

Total variance: Sy2

R=0.02
MI1=1.03 nat

P(X)

R(Y)

R=0.00y
MI=1.65 nat




Gaussian Distribution

P(X) X 1 a1
Y -. m_mr
g 1 @ - -ﬂ-}i -1 !
Y kfy P(Y) ! {-y;} Golubet al, Science Vol 286: 505{_41939{%}
s,
A m-r H
5 . SN = sivs lI
= ) S2N @R ~x -y P
LD =) G after “standardization” x = (x-my)/s, S- s+
Fisher Score Fisher Score and ANOVA
A A A
* Multi-class classification of continuous variables
(or regression of categorical variables): e __ =@ ___ . .
VlA -l -VEA F_
Va, ~ residual variance

F= pooled within class var.

** xS -¥ .
*:ﬁzi? $°
4] =]
» Two-class case:
tmF—=TT7 )2 ~ T

= U sN =
(M+/m)s+2 + (m-/m)s-2 st*s

ANOVA model: x; = m+ Vv + g;

Reminder: model of the effect on observations x of a
systematic factor of variability vi {vy, Vp,...Vj,...} and
intrinsic variability e (random error, normally
distributed).

10



Fisher Score and Regression

F=

_ _variance explained SELZ-SF2 1
residual variance S r2 T1-R2

M

1

A X Variance
R _lj__ Tota explained:
IJ l‘r lJ variance: Sy2 - Sr2

Sy2 )

Eliminating Redundancy:
Conditional Relevance

Forward Selection with MI

Forward Selection with GS

Fleuret, 2004. Practical only for binary features.

+ Select a first feature X,;ywith maximum Mi
with the target.

» For each remaining feature X; and each
previously selected feature X,;), compute the
conditional mutual information:

CMICX;, Y | Xy )= SX?(j) P(Xoy) MICK, Y| Xoy)

» Select the feature with maximum CMI.

Stoppiglia, 2002. GramSchmidt orthogonalization.

* Select a first feature X, with maximum
cosine with the target cos(x;, y)=x.y/||x]| [ly||
For each remaining feature X;

— Project X; and the target Y on the null space of the
features already selected

— Compute the cosine of X; with the target in the
projection

* Select the feature X,with maximum cosine
with the target in the projection.

11



Relief Other criteria: see chapter 3!

| Method X | ¥ [Comments |

| Formula| B[M|C|B[M|C| |

Eq. 3.1 |+|s| |[+s
Eq. 3.4 |+|s

dard, rescaled Bayesian rel
ity; used for unbal.

12, or a permutation test

mula is for a simplified version ReliofX
ions and feature interactions,

at and product probabilities.
. 3.23 and Gini Eq. 3.39.
mation

ivalent to mutual i

D ) F—— 1 sty
miss (] o | 4 methods,

! © n mi

| ! ! earest SS R
+ >

&0 6 b 00d s B0 O K1 o e i A HIE SR

= F-measure ¢ a logical rule.

- > Weight of evidence 3.37

Dhlt Dmlss MDL |Eq. 333/+| s r multivalued features.

Homework 5 Feature Transforms Implemented

e Complete homework 4 and train a classifier
using the new feature representation you m X:{ X..}
chose or implemented. J

* Make a submission to the website of the
challenge to get your test set score: v
http://www.nipsfsc.ecs.soton.ac.uk/ .

« Email the result zip file of the results to N
guyoni @inf.ethz.c h with subject N>n
"Homework5" no later than:

Tuesday November 29th. m F :{f ik} o
N<n

a= (X))




Match Filters

Hadamard Transform

Implementation:

One “match filter” object that takes a“ filter_bank” object as
an argument.

Examples:

- hadamard_bank: Hadamard transform, similar to the Fourier
transform, but has discrete valued orthogonal basis functions.

- pca_bank: uses the first“ f_max” principa components as a
filter bank.

- kmeans_bank: uses” f_max” cluster centers as a filter bank.

Sample 8x8 filter bank

10 20 30 40 50 .
nmy_bank=hadanar d_bank;
show( ny_bank) ;

ny_prepro=match_filter(ny_bank);

[d,

ny_prepro] =trai n(my_prepro, D.train);

browse_digit(d. X, d.Y);

Principal Components

Kmeans Clustering

Filter bank obtained for 25 components

o 20 40 60 80 100
ny_bank=pca_bank(' f_max=25");
ny_prepro=match_filter(ny_bank);

[d, my_prepro]=train(my_prepro, D.train);
show( ny_prepro);

120 140

Filter bank obtained for 36 clusters

Gasad g

wop
o
10k
120

9 a9 794

8 100 120 140 160

L RO &
Lo
S{dHL
QL Lo
0 -LoN
NL LD

g

ny_bank=kmeans_bank(' f _max=36");
nmy_prepro=match_filter(my_bank);

[d, my_prepro]=train(ny_prepro, D.train);
show( ny_prepro);

13



Fourier Transform

Convolutions

wwwwww 5 Class: 1 Index: 5 Class: 1

ny_prepro=fourier;
[d, my_prepro]=train(ny_prepro, D.train);
browse_digit(d. X, d.Y);

Implementation:
One “ convolve’ object that takes a* xxx_ker” object as arg.
Examples:

- gauss_ker: Gaussian kernel. Four parameters: dim1, dim2 (kernel
size) and sigmal, sigma2 (Gaussian width). The sigmas are scaled
automatically to 0.2*dim if only the dimensions are given. It is
better to chosen odd numbers for the kernel dimension.

- exp_ker: Exponentia kernel. Same parameters.

- chai n({convol ve(gauss_ker ({‘ di ml=5", ‘dinR=1"})),
convol ve(gauss_ker ({*dim=1", ‘din=5"}))}) equivaent
but faster than convol ve(gauss_ker ({* di mL=5', ‘din2=5"}))

Convolution: smoothing

Best so far...

AL I .

_ker=gauss_ker({'di m=9',"'di n2=9"',"' sigmal=1.8","'sigma2=1.8"});

=train(convol ve(my_ker), D.train); browse_digit(d. X, d.Y);

pixelGisette exp_conv_p4 s0.1
test_ BER=0.91%

14



Tips to outperfom baselineGisette

Keep good records!

baselineGisette (testBER=1.8%. feat=20%)

ny_cl assi f=svc({' coef 0=1', 'degree=3",
'gamme=0', 'shrinkage=1'});

nmy_nodel =chai n({normal i ze, s2n('f_nax=1000"),
nmy_classif});

D.alltrain=data([D.train. X; D.valid.X],
[D.train.Y;D.valid.Y]);

cv_nodel =cv(ny_nodel, {'folds=5",
'store_all=0'});

Resul t=train(cv_nodel, D.alltrain);

Qut X=[]; QutY=[]; for k=1:5, QutX=[QutX;
Resul t.child{k}.X]; QutY=[QutY;
Resul t.child{k}.Y]; end

CV_BER=bal anced_errate(Qut X, QutY);

* Keep your latest and greatest model and
results (the zip file).

« Document what you did.

Class requirements:
« One complete entry (5 datasets) on the
challenge website.

* A poster explaining what you did.

Tiny example

Theory and practice

Y=[X:20¢=1)1(X )(X5) J

X1

RS
b Q Q N
4
2 7t 12 12 1 1 _Iz
o 2
A A
4 4 4
3 3 3
2 2 2
1 1 1
o 1 2 ;(]_ 0 1 2 ;(2 0 1 2;(3
ARy X3 Ay X3 o XaX ®m
i B BR L
=1 =1 ) ) !
2 1
Xo=2 X1=2 0,2 12 2,2
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