Lecture 7: Support Vector Machines

Isabelle Guyon
guyoni@inf.ethz.ch

References

• An training algorithm for optimal margin classifiers
 Boser-Guyon-Vapnik, COLT, 1992
• Book chapters 1 and 12
• Software LibSVM
 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Perceptron Learning Rule

\[w_j \leftarrow w_j + y_i x_{ij} \]

If \(x \) is misclassified

\[w_j = \sum \alpha_i y_i x_{ij} \]

Converges to “one” solution classifying well all the examples.

Optimum Margin Perceptron

\[w_j \leftarrow w_j + y_i x_{ij} \]

If \(x \) is the least well classified

\[w_j = \sum \alpha_i y_i x_{ij} \]

Converges to the optimum margin Perceptron (Mezard-Krauth, 1988).

QP formulation (vapnik, 1962).
Optimum Margin Solution

- Unique solution.
- Depends only on support vectors (SV)
 \[w_j = \sum_{i \in SV} \alpha_i y_i x_{ij} \]
- SVs are examples closest to the boundary.
- Bound on leave-one-out error: \(\text{LOO} \leq n_{SV}/m \)
- Most "stable", good from MDL point of view.
- But: sensitive to outliers and works only for linearly separable case.

Negative Margin

Multiple negative margin solutions, which all give the same number of errors.

Soft-Margin

Examples within the margin area incur a penalty and become non-marginal support vectors. Unique solution again (Cortes-Vapnik, 1995):

\[w_j = \sum_{i \in SV} \alpha_i y_i x_{ij} \]

Non-Linear Perceptron

\[f(x) = w \cdot \Phi(x) + b \]
Kernel “Trick”

- \(f(x) = w \cdot \Phi(x) \)
- \(w = \sum_i \alpha_i y_i \Phi(x_i) \)

Dual forms

\(f(x) = \sum_i \alpha_i y_i k(x_i, x) \)

\(k(x_i, x) = \Phi(x_i) \cdot \Phi(x) \)

Kernel Method

\(f(x) = \sum_i \alpha_i k(x_i, x) + b \)

\(k(\cdot, \cdot) \) is a similarity measure or “kernel”.

Some Kernels (reminder)

A kernel is a dot product in some feature space:

\(k(s, t) = \Phi(s) \cdot \Phi(t) \)

- **Examples:**
 - \(k(s, t) = s \cdot t \) Linear kernel
 - \(k(s, t) = \exp \cdot \gamma ||s-t||^2 \) Gaussian kernel
 - \(k(s, t) = \exp \cdot \gamma ||s-t|| \) Exponential kernel
 - \(k(s, t) = (1 + s \cdot t)^q \) Polynomial kernel
 - \(k(s, t) = (1 + s \cdot t)^q \exp \cdot \gamma ||s-t||^2 \) Hybrid kernel

Support Vector Classifier

\(f(x) = \sum_{k=SV} \alpha_k y_k k(x_k, x) \)

Boser-Guyon-Vapnik-1992
Margin and $||w||$

Maximizing the margin is equivalent to minimizing $||w||$.

Quadratic Programming

- **Hard margin:**

 \[
 \min ||w||^2 \\
 \text{such that} \\
 y_j(w \cdot x_j + b) \geq 1
 \]

- **Soft margin:**

 \[
 \min ||w||^2 + C \sum_j \xi_j^\beta \\
 \xi_j \geq 0, \beta = 1, 2 \\
 \text{such that} \\
 y_j(w \cdot x_j + b) \geq (1 - \xi_j)
 \]

Dual Formulation

- Non-linear case: $x \rightarrow \Phi(x)$
- \[
 \min ||w||^2 + C \sum_j \xi_j^\beta \\
 \xi_j \geq 0, \beta = 1, 2 \\
 \text{such that} \\
 y_j(w \cdot \Phi(x_j) + b) \geq (1 - \xi_j)
 \]
- \[
 \max -\frac{1}{2} \alpha^\top K \alpha + \alpha \cdot \mathbf{1} \\
 K = [y_j k(x_i, x_j)] + (1/C) \delta_j \\
 \text{such that} \\
 \alpha^\top y = 0; 0 \leq \alpha \leq C
 \]

“Ridge SVC”

- **Soft margin:**

 \[
 \min ||w||^2 + C \sum_j \xi_j^\beta \\
 \xi_j \geq 0, \beta = 1, 2 \\
 \text{such that} \\
 y_j(w \cdot \Phi(x_j) + b) \geq (1 - \xi_j)
 \]

- **Ridge SVC:**

 \[
 \text{Loss } L(x_j) = \max (0, 1 - y_j f(x_j))^\beta \\
 \text{Risk } \sum_i L(x_i) \\
 \min (1/C) ||w||^2 + \sum_j L(x_j) \\
 \text{regularized risk}
 \]
Ridge Regression (reminder)

- Sum of squares:
 \[R = \sum_i (f(x_i) - y_i)^2 = \sum_i (1-y_i f(x_i))^2 \]

- Add "regularizer":
 \[R = \sum_i (1-y_i f(x_i))^2 + \lambda \|w\|^2 \]

- Compare with SVC:
 \[R = \sum_i \max(0, 1-y_i f(x_i)) + \lambda \|w\|^2 \]

Structural Risk Minimization

- Nested subsets of models, increasing complexity/capacity:
 \[S_1 \subset S_2 \subset \ldots \subset S_N \]
 \[\text{Vapnik-1984} \]

- Example, rank with \(\|w\|^2 \)
 \[S_k = \{ w | \|w\|^2 < A_k \}, A_1 < A_2 < \ldots < A_k \]

- Minimization under constraint:
 \[\min R_{\text{emp}}[f] \text{ s.t. } \|w\|^2 < A_k \]

- Lagrangian:
 \[R_{\text{reg}}[f] = R_{\text{emp}}[f] + \lambda \|w\|^2 \]

- Radius-margin bound:
 \[\text{LOOcv} = 4 r^2 \|w\|^2 \]
 \[\text{Vapnik-Chapelle-2000} \]

Loss Functions

- Decision boundary
- Margin
- \(z = y f(x) \)
- \(L(y, f(x)) \)

Regularizers

- \(\|w\|^2 = \sum_i w_i^2 \) : 2-norm regularization (ridge regression, original SVM)
- \(\|w\|_1 = \sum_i |w_i| \) : 1-norm regularization (Lasso Tibshirani 1996, 1-norm SVM 1965)
- \(\|w\|_0 = \text{length}(w) \) : 0-norm (Weston et al., 2003)
Regression SVM

• Epsilon insensitive loss:
 \[| y_i - f(x_i) |^\varepsilon \]

Unsupervised learning

SVMs for:
• density estimation: Fit \(F(x) \) (Vapnik, 1998)
• finding the support of a distribution (one-class SVM) (Schoelkopf et al, 1999)
• novelty detection (Schoelkopf et al, 1999)
• clustering (Ben Hur, 2001)

Summary

• For statistical model inference, two ingredients needed:
 – A loss function: defines the residual error, i.e. what is not explained by the model; characterizes the data uncertainty or “noise”.
 – A regularizer: defines our “prior knowledge”, biases the solution; characterizes our uncertainty about the model. We usually bet on simpler solutions (Ockham's razor).

Exercise Class
Homework 7

1. Download the software for homework 7.
2. Inspiring yourself by the examples, write a new feature ranking filter object. Choose one in Chapter 3 or invent your own.
3. Provide the p-value and FDR (using a tabulated distribution or the probe method).
4. Email a zip file your object and a plot of the FDR to guyoni@inf.ethz.ch with subject "Homework7" no later than: Tuesday December 13th.

Dexter

DEXTER filters texts

<table>
<thead>
<tr>
<th>Size</th>
<th>Type</th>
<th>Features</th>
<th>Training</th>
<th>Validation</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>MB</td>
<td>sparse</td>
<td>Ber</td>
<td>0.33</td>
<td>0.55</td>
</tr>
<tr>
<td>0.7</td>
<td>int</td>
<td></td>
<td></td>
<td>0.05</td>
<td>0.33</td>
</tr>
<tr>
<td>0.5</td>
<td>int</td>
<td></td>
<td></td>
<td>0.05</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Best entries:
BER~3.3-3.9% AUC~0.97-0.99
Frac_fet~1.5% Frac_probe~50%

Baseline Dexter

- `my_classif=svc({'coef0=1', 'degree=1', 'gamma=0', 'shrinkage=0.5'})`
- `my_model=chain($(s2n('f_max=300'), normalize, my_classif))`

Results:

<table>
<thead>
<tr>
<th></th>
<th>Train</th>
<th>Valid</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>BER</td>
<td>0.33</td>
<td>0.05</td>
<td>0.33</td>
</tr>
<tr>
<td>AUC</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>Frac_feature</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Frac_probe</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
</tr>
</tbody>
</table>
Evaluation of pval and FDR

- **Ttest object:**
 - computes pval analytically
 - FDR ~ pval * n_sp / n

- **probe object:**
 - takes any feature ranking object as an argument (e.g. s2n, relief, Ttest)
 - pval ~ n_sp / n
 - FDR ~ pval * n_sp / n

Analytic vs. probe

- Red analytic – Blue probe

Relief

- Relief vs. Ttest (Dashed line: Ttest with probes)