

Filters

Methods:

- <u>Criterion:</u> Measure feature/feature subset "relevance"
- <u>Search:</u> Usually order features (individual feature ranking or nested subsets of features)
- Assessment: Use statistical tests

Results:

- Are (relatively) robust against overfitting
- · May fail to select the most "useful" features

Wrappers

Methods:

- <u>Criterion:</u> Measure feature subset "usefulness"
- <u>Search:</u> Search the space of all feature subsets
- Assessment: Use cross-validation

Results:

- Can in principle find the most "useful" features, but
- Are prone to overfitting

Nested subset methods perform a greedy search:

At each step add or remove a single feature to best improve (or least degrade) the cost function.

- Backward elimination:

Start with all features, progressively remove (never add).

- Forward selection:

Start with an empty set, progressively add (never remove).

Computational Complexity

Imagining one split training/validation, n features:

- Step 1: Train n classifiers
- Step 2: Train (n-1) classifiers
- ...
- Step n: Train 1 classifier
- →n+(n-1)+...+1 = n(n+1)/2 trainings

But: forward selection starts with small feature subsets, so cheaper if stopped early.

Statistical Complexity

- N= n(n+1)/2 feature subsets considered.
- C=log N ~ log $n^2 = 2 \log n$
- Generalization error governed by C/m ~ (log n) / m
- Much better than exhaustive search: we can afford to search a number of features n **exponential** in the number of validation examples m.

Comparison

- In Feature Ranking:
 There is no search.
- A total order of features is formed
- This also defined nested subsets.
- To determine the optimum number of features, one can used the performances of a classifier, but the only n trainings are performed i.e. C = n.
- 2) Some **Embedded Methods** are also nested subset methods (performing forward selection or backward elimination). But at each step, they "consider" only the addition or removal of ONE feature so, n trainings are performed i.e. **C** = **n**.

eneralization_erro	$r \leq Validatior$	n_error + ε(C
Method	Number of	Complexity
	subsets tried	C
Exhaustive search wrapper	2 ⁿ	n
Nested subsets greedy wrapper	n(n+1)/2	log n
Feature ranking or embedded methods	n	log n

A Few Variants and Extensions

- Beam search: keep k best path at each step.
- GSFS: generalized sequential forward selection – when (n-k) features are left try all subsets of g features i.e. (^{n-k}_g) trainings. More trainings at each step, but fewer steps.
- **PTA(I,r):** plus I, take away r at each step, run SFS I times then SBS r times.
- Floating search (SFFS and SBFS): One step of SFS (resp. SBS), then SBS (resp. SFS) as long as we find better subsets than those of the same size obtained so far. Any time, if a better subset of the same size was already found, switch abruptly.

Stochastic Search

- · Simulated Annealing:
 - Make a step in feature space, compute ΔE
 - If $\Delta E < 0$, accept the change
 - Otherwise, accept the change with probability
 - exp(-∆E/T) - Progressively "cool down".
- Genetic Algorithms:
 - Keep a "population" of candidates (not just one)
 - A bit vector defining a feature subset is a
 - "chromosome"
 - A "mutation" is a bit flip
 - A "cross-over" is obtained by cutting two chromosomes and swapping their tails.

Hypothesis Testing (reminder)

Ingredients:

- A "null hypothesis" H₀.
 "H₀: *The feature is irrelevant*"-
- A test statistic R (relevance index). $r_{\alpha} r_{0}$
- A distribution of R if H₀ is true (null distribution) Proba(R > ε).
- A risk value α and its corresponding threshold r_{α} , such that $\alpha = Proba(R > r_{\alpha})$.
- A realization r₀ of R from the training samples.

If $r_0 > r_{\alpha}$, reject H_0 , with risk α of being wrong.

Test of significance

- What difference in error rate between 2 classifiers is statistically significant?
- McNemar paired test:
 - assume classifier 1 is better v_i =number of errors classifier i makes that the other classifier does not make.
 - if E₂-E₁≥ (z_α/ν)sqrt(v₁ +v₂) reject H₀ of equality of error rates with risk α.
 one sided risk α=0.01, z_α=2.33.

Single Split

- Advantage: i.i.d errors. We can easily compute error bars and perform statistical tests.
- Disadvantage:
 - Small number of validation examples: large error bar.
 - Large number of validation examples, small number of training examples: large bias.

Cross-Validation

- Average over multiple splits
- Multiple splits with replacement (bootstrap)
- K-fold cross-validation
- Leave-one-out

Virtual LOO

- For some algorithms, it is possible to compute exactly (or approximately) the effect of removing one example on the loss function value of that example.
- Need to train only once!
- Examples:
 - Least square regression: exact formula.
 - Neural nets: approximate formula.
 - SVC: approximate formula.

Avoid biased CV!

- Wrong:
 - Rank the features with all the training set.
 - Use CV (e.g. virtual LOO) to select among subsets of variable size.
 - Cost: one training for each subset size.
- Correct:
 - Remove one example.
 - Rank the features.
 - Train on remaining examples and test on left out example for variable subset sizes.
 - Average the results for each subset size.
 - Cost: m training for each subset size.

Nested CV loops

- One should select both features and hyperparameters. Which should come first?
 - HP before feature selection
 - feature selection before HP
 - Both simultaneously
- Difficulty: both simultaneously is computationally expensive and requires a lot of data.

Variance of CV

- We average over multiple splits, but now we do not know the error bar exactly anymore (non i.i.d. errors).
- LOO has a lot of variance. Often 10-fold CV is a good choice.
- Stdev(CV-results): overestimate error bar; Stderr(CV-results): underestimate error.

Multiple Testing

- When we compare N classifiers, we perform multiple tests. Our risk of being wrong increases. Remember Bonferroni's correction $\alpha \leftarrow \alpha/N$.
- This is the same story as the Vapnik bound: $E_{gene} \leq \frac{\ln N - \ln \alpha}{m}, \quad \text{with proba } (1-\alpha)$
- One should compare as few classifiers are possible:
 - Pre-rank the classifiers before your experiments
 Of two classifiers performing similarly (within the
 - error bar), prefer the classifier of lower rank.

Performance Prediction Challeng							
Dataset	Size	Туре	Features	Training Examples	Validation Examples	Test Examples	
ADA	0.6 MB	Dense	48	4147	415	41471	
<u>GINA</u>	19.4 MB	Dense	970	3153	315	31532	
HIVA	7.6 MB	Dense	1617	3845	384	38449	
NOVA	2.3 MB	Sparse binary	16969	1754	175	17537	
<u>SYLVA</u>	15.6 MB	Dense	216	13086	1308	130858	
http://www.modelselect.inf.ethz.ch/							

Conclusion

- No training data split:
 - Use statistical tests or probe method to compute FPR=pval.
 - Set threshold of significance on FDR \cong FPRn/n_{sc}
- Training data split(s):
 - One split: variance known E(1-E)/ν (but high), statistical tests can be performed.
 - Cross-validation: variance less high but not exactly known, statistical tests less rigorous.
 - Multiple comparisons: rank classifiers a priori.

Homework 8: Dexter

- Baseline model: 5% BER
- Best challenge entries ~3% BER
- 1) Download the software for homework 7.
 2) Using the method you implemented for homework 7 or another method, try to outperform the baseline method on the Dexter dataset.
 3) Email a zip file your results to guyoni @inf.ethz.ch with subject "Homework8" no later than: Tuesday December 20th.

Tips for making a good slide presentation

Outline

- The contents
- The spirit
- The title slide
- The warm up
- The slides
- The flow
- The take home message
- The questions

Good Presentations:

- 1) Good material
 - know what you want to talk about
- 2) Good slides
 - informative but simple
- 3) Good communication skills
 - practice, practice, practice

Good Material

You need:

- Something interesting to communicate
- A goal
 - Get a job offer
- To start
 - Make an outline
 - Choose your title
 - Think of your opening joke

The art of being relevant

Isabelle Guyon ETH Zürich guyoni @inf.ethz.ch

A Good Title

- Short
- Informative
- A bit provocative

A Good Start Come early to make sure the projector works to meet with your audience Thank your guest and your collaborators Make a joke if you can't... show your outline

ME

- Twenty years of experience in hill climbing, always choosing the steepest ascent
- Three+one children (the third one is my husband)
- Judo black belt

A Good Spirit

- Provide a service - your audience is your customer
- Impress by your contents

 no boasting
- Be nice
 - don't talk bad about others
 - acknowledge the work of others

Feature Irrelevance (variants)

Conditionally

- Surely irrelevant feature: P(X_i, Y |X⁻ⁱ) = P(X_i |X⁻ⁱ)P(Y |X⁻ⁱ) for all assignment of values to X⁻ⁱ
- Surely irrelevant feature: P(X_i, Y |S⁻ⁱ) = P(X_i |S⁻ⁱ)P(Y |S⁻ⁱ) for all S⁻ⁱ ⊆ X⁻ⁱ for all assignment of values to S⁻ⁱ

Informative Slides

- One topic per slide – have a slide title
- Go from the known to the unknown

 start with a sentence, a picture, an idea people are familiar with
- Less is more
 - avoid busy slides, too many fonts
 - but, labels the axes!

- Use colors

 but not too many
 be consistent with color-coding
- Use animations

 but only if necessary

Punchline

- Do not forget to SAY what should be concluded
- Nothing is self evident

