
1

Lecture 9:
Embedded Methods

Isabelle Guyon guyoni@inf.ethz.ch

André Elisseeff AEL@zurich.ibm.com

Chapter 5: Embedded methods

Filters,Wrappers, and
Embedded methods

All features Filter
Feature
subset Predictor

All features

Wrapper

Multiple
Feature
subsets

Predictor

All features Embedded
method

Feature
subset

Predictor

Filters

• Criterion: Measure feature/feature subset
“relevance”

• Search: Usually order features (individual
feature ranking or nested subsets of features)

• Assessment: Use statistical tests

• Are (relatively) robust against overfitting

• May fail to select the most “useful” features

Methods:

Results:

Wrappers

• Criterion: Measure feature subset
“usefulness”

• Search: Search the space of all feature
subsets

• Assessment: Use cross-validation

• Can in principle find the most “useful”
features, but

• Are prone to overfitting

Methods:

Results:

2

Embedded Methods

• Criterion: Measure feature subset
“usefulness”

• Search: Search guided by the learning
process

• Assessment: Use cross-validation

• Similar to wrappers, but
• Less computationally expensive
• Less prone to overfitting

Methods:

Results:

New

Statistical
tests

Single feature ranking

Cross
validation

Performance
bounds

Nested subset,
forward selection/
backward elimination

Heuristic or
stochastic search

Exhaustive search

Single
feature
relevance

Relevance
in context

Feature subset
relevance

Performance
learning

machine

Search

Criterion

As
se

ss
m

en
t

Statistical
tests

Single feature ranking

Cross
validation

Performance
bounds

Nested subset,
forward selection/
backward elimination

Heuristic or
stochastic search

Exhaustive search

Single
feature
relevance

Relevance
in context

Feature subset
relevance

Performance
learning

machine

Three “Ingredients”

Statistical
tests

Single feature ranking

Cross
validation

Performance
bounds

Nested subset,
forward selection/
backward elimination

Heuristic or
stochastic search

Exhaustive search

Single
feature
relevance

Relevance
in context

Feature subset
relevance

Performance
learning

machine

New

New Guided search: we do not consider alternative paths.

Forward Selection

…
Start

n

n-1

n-2

1

Forward Selection with GS

• Select a first feature X?(1)with maximum
cosine with the target cos(xi, y)=x.y/||x || ||y ||

• For each remaining feature Xi
– Project Xi and the target Y on the null space of the

features already selected
– Compute the cosine of Xi with the target in the

projection
• Select the feature X?(k)with maximum cosine

with the target in the projection.

Embedded method for the linear least square predictor

Stoppiglia, 2002. Gram-Schmidt orthogonalization.

3

Forward Selection w. Trees

• Tree classifiers,
like CART (Breiman, 1984) or C4.5 (Quinlan, 1993)

At each step,
choose the
feature that

“reduces entropy”
most. Work

towards “node
purity”.

All the
data

f1

f2

Choose f1
Choose f2

Backward Elimination

…

Start

1

n-2

n-1

n

Backward Elimination:RFE

Start with all the features.
• Train a learning machine f on the current subset

of features by minimizing a risk functional J[f].
• For each (remaining) feature Xi, estimate,

without retraining f, the change in J[f] resulting
from the removal of Xi.

• Remove the feature X?(k) that results in
improving or least degrading J.

Embedded method for SVM, kernel methods, neural nets.

RFE-SVM, Guyon, Weston, et al, 2002

OBD (LeCun et al, 1990)

J[f]

wi0

DJ = Σi ∂J/∂wi Dwi + ½ Σi ∂2J/∂wi
2 (Dwi)2 + cross-terms + O(||Dw||3)

Dwi = wi
*

DJ ≅ ½ ∂2J/∂wi
2 (wi

*)2

Simple case: linear classifier + J quadratic form of w ⇒ DJ α wi
2

RFE for ridge regression and SVM: remove input with smallest wi
2

wi
*

4

Nested Subset Methods

• Forward selection

• Backward elimination

• Feature ranking (filters)

[]]]]]]]]]]]]]]]]

[]]]]]]]]]]]]]]]]

]]][]]]]]]]]]]]]]

Complexity Comparison

Method Number of
subsets
tried

Complexity
C

Exhaustive search
wrapper

2n n

Nested subsets
greedy wrapper

n(n+1)/2 log n

Feature ranking
or embedded
methods

n log n

Generalization_error ≤ Validation_error + ε(C / m)

m: number of validation examples, n: number of features.

Scaling Factors

Idea:Transform a discrete space into a continuous space.

• Discrete indicators of feature presence: σi ∈{0, 1}

• Continuous scaling factors: σi ∈ IR

σ=[σ1, σ2, σ3, σ4]

Now we can do gradient descent!

Learning algorithm

Training set

Embedded methods
(alternative definition)

• Definition: an embedded feature selection method is
a machine learning algorithm that returns a model
using a limited number of features.

output

5

Examples

• Forward selection with Decision
trees

• Forward selection with Gram-
Schmidt

• Any algorithm producing a model
where “sensitivity” analysis can be
done:
– Linear system: remove feature i if w i is

smaller than a fixed value.
– Others, e.g. parallelepipeds: remove

dimension where width is below a
fixed value.

Note: embedded methods use the specific
structure of the model returned by the algorithm to
get the set of “relevant” features.

Design strategies

• As previously suggested: use tricks and
intuition. Might work but difficult. Still can
produce very smart algorithms (decision
trees).

• Other means: interpret feature selection as a
model selection problem. In that context, we
are interested in finding the set of features
such that the model is the “best”.

Feature selection as
model selection - 1

• Let us consider the following set of functions
parameterized by α and where σ 2 {0,1}n represents
the use (σi=1) or rejection of feature i.

output

σ1=1 σ3=0

Example (linear systems, α=w):

Feature selection as
model selection - 2

• We are interested in finding α and σ such that
the generalization error is minimized:

where

Sometimes we add a constraint: # non zero σi’s · s0

Problem: the generalization error is not known…

6

Feature selection as
model selection - 3

• The generalization error is not known directly but
bounds can be used.

• Most embedded methods minimize those bounds
using different optimization strategies:
– Add and remove features
– Relaxation methods and gradient descent
– Relaxation methods and regularization

Example of bounds (linear systems):

Linearly separable

Non separable

Feature selection as
model selection -4

• How to minimize ?

Most approaches use the following method:

This optimization is
often done by relaxing
the constraint
σ 2 {0,1}n

as σ 2 [0,1]n

Add/Remove features 1

• Many learning algorithms are cast into a minimization
of some regularized functional:

• What does G(σ) become if one feature is removed?
• Sometimes, G can only increase… (e.g. SVM)

Empirical error
Regularization

capacity control

Add/Remove features 2

• It can be shown (under some conditions) that
the removal of one feature will induce a
change in G proportional to:

• Examples: SVMs
! RFE (Ω(α) = Ω(w) = ∑i wi

2)

Gradient of f wrt. ith

feature at point xk

7

Add/Remove features - RFE

• Recursive Feature Elimination

Minimize
estimate of

R(α,σ)
wrt. α

Minimize the
estimate R(α,σ)
wrt. σ and under
a constraint that

only limited
number of

features must be
selected

Add/Remove feature
summary

• Many algorithms can be turned into embedded methods for
feature selections by using the following approach:

1. Choose an objective function that measure how well the
model returned by the algorithm performs

2. “Differentiate” (or sensitivity analysis) this objective function
according to the σ parameter (i.e. how does the value of this
function change when one feature is removed and the
algorithm is rerun)

3. Select the features whose removal (resp. addition) induces
the desired change in the objective function (i.e. minimize
error estimate, maximize alignment with target, etc.)

What makes this method an ‘ embedded method’ is the use of the
structure of the learning algorithm to compute the gradient
and to search/weight relevant features.

Add/Remove features
when to stop

• When would you stop selecting features?
– When objective function has reached a

plateau?
• What happens for the bound r2||w||2 when

features are removed?

– Using a validation set?
• What size should you consider?

– Don’t stop, just rank features?

Gradient descent - 1

• How to minimize ?

Most approaches use the following method:

Gradient step in [0,1]n.

Would it make sense to
perform just a gradient
step here too?

8

Gradient descent 2

Advantage of this approach:
• can be done for non- linear systems (e.g. SVM

with Gaussian kernels)
• can mix the search for features with the

search for an optimal regularization
parameters and/or other kernel parameters.

Drawback:
• heavy computations
• back to gradient based machine algorithms

(early stopping, initialization, etc.)

Gradient descent
summary

• Many algorithms can be turned into embedded methods for
feature selections by using the following approach:

1. Choose an objective function that measure how well the
model returned by the algorithm performs

2. Differentiate this objective function according to the σ
parameter

3. Performs a gradient descent on σ. At each iteration, rerun the
initial learning algorithm to compute its solution on the new
scaled feature space.

4. Stop when no more changes (or early stopping, etc.)
5. Threshold values to get list of features and retrain algorithm

on the subset of features.

Difference from add/remove approach is the search strategy.
It still uses the inner structure of the learning model but it
scales features rather than it selects them.

Design strategies (revisited)

• Directly minimize the number of features that an
algorithm uses (focus on feature selection directly
and forget generalization error).

• In the case of linear system, feature selection can be
expressed as:

Subject to

Feature selection for linear system is
NP hard

• Amaldi and Kann (1998) showed that the
minimization problem related to feature
selection for linear systems is NP hard: the
minimum cannot be approximated within 2log1-

ε(n) for all ε >0, unless NP is in
DTIME(npolylog(n)).

• Is feature selection hopeless?

• How can we approximate this minimization?

9

Minimization of a sparsity function

• Replace by another objective function:

– l1 norm:

– Differentiable function:

• Do the optimization directly!

The l1 SVM

• The version of the SVM where the
margin term ||w||2 is replace by the l1
norm ∑i |wi| can be considered as an
embedded method:
– Only a limited number of weights will be

non zero (tend to remove redundant
features)

– Difference from the regular SVM where
redundant features are all included (non
zero weights)

A note on SVM

• Changing the regularization term has a strong
impact on the generalization behavior…

• Let w 1=(1,0), w 2=(0,1) and w λ=(1-λ)w 1+λw 2
for λ 2 [0,1], we have:
– ||wλ||2 = (1-λ)2 + λ2) minimum for λ = 1/2
– |wλ|1 = (1-λ) + λ

w1w2

λ2 + (1-λ)2

w1w2

λ+ (1-λ) = 1

The gradient descent

• Perform a constrained gradient descent
on:

Under the constraints:

10

A direct approach

• Replace by ∑i log(ε + | wi|)

• Same idea as gradient descent but using another approximation.
• Boils down to the following multiplicative update:

Embedded method - summary

• Embedded methods are a good inspiration to design
new feature selection techniques for your own
algorithms:
– Find a functional that represents your prior knowledge about

what a good model is.
– Add the \sigma weights into the functional and make sure it’s

either differentiable or you can perform a sensitivity analysis
efficiently

– Optimize alternatively according to \alpha and \sigma
– Use early stopping (validation set) or your own stopping

criterion to stop and select the subset of features

• Embedded methods are therefore not too far from
wrapper techniques and can be extended to
multiclass, regression, etc…

Exercise Class

Homework 8: Solution

• Baseline model: 5% BER (trained on training
data only)

• Best challenge entries ~3% BER
• Tips to outperform the challengers:

– Train on (training + validation) set => double the
number of examples

– Vary the number of features
my_classif=svc({'coef0=1', 'degree=1', 'gamma=0',

'shrinkage=0.5'});

my_model=chain({s2n('f_max=???'), normalize,
my_classif})
– Select best model by CV

11

Difficulty: Good CV

BER

Number of features
• Get 1 point if you make an entry with less than 5% error

• Get 2 points if you make an entry with less than 4% error

0 500 1000 1500 2000 2500 3000 3500 4000
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8
blue=cv5, red=cv10, green=cv15

Filters Implemented

• @s2n
• @Relief
• @Ttest
• @Pearson (Use Matlab corrcoef. Gives the same results

as Ttest, classes are balanced.)

• @Ftest (gives the same results as Ttest . Important for the
pvalues: the Fisher criterion needs to be multiplied by
num_patt_per_class or use anovan.)

• @aucfs (ranksum test)

Exercise - 1

• Consider the 1 nearest neighbor algorithm.
We define the following score:

• Where s(k) (resp. d(k)) is the index of the
nearest neighbor of xk belonging to the same
class (resp. different class) as x k.

Exercise - 1 (cont.)

• 1. Motivate the choice of such a function to
upper bound the generalization error
(qualitative answer)

• 2. How would you derive an embedded
method to perform feature selection for 1
nearest neighbor using this functional?

• 3. Motivate your choice (what makes your
method an ‘embedded method’ and not a
‘wrapper ’ method)

12

Exercise - 2

• Design an RFE algorithm in a multi-
class set-up (hint: choose a regular
multi-class SVM, add the \sigma scaling
factors into the functional and compute
the gradient).

• Discuss the advantages/drawback of
this approach when compared to using
many two classes RFE algorithms in a
one-against-the rest approach.

