Spectral methods

Some methods:

e Kernel PCA

e MDS

e Spectral Clustering

e Isomap and Locally Linear Embedding (LLE)

Common to all approaches:

e Embedding methods.
e No immediate out-of-sample extension.




Observation: All methods can be regarded as spectral decom-
positions of a kernel matrix.

Proposed approach: Generic out-of-sample extension by ap-
plication of Nystrom formula to kernel operator.




Principal Component Analysis — PCA

Find components that are most useful for representing data
based on the covariance (scatter) matrix C.

Eigenvectors sorted by decreasing Eigenvalues: provide direc-
tion of highest variance.

Select top N Eigenvectors to project input data into reduced
space that best minimizes the squared-error.

Linear system.




Kernel PCA

Map data onto a (higher dimension, possibly infinite) feature
space via a data independent function ¢

~

6 :x — d(x)

Perform PCA on higher feature space to yield the new (lower
dimensional) space.

Compute (empirical) feature space covariance matrix:

~ ~

€' =E [6(x)5(x)"




Kernel PCA

Problem 1: Centering

Bun() = Bx) — DT 13(x)

New data dependent function ¢,,(z)
C = E [qu(x)qu(X)T}

Eigen-decomposition to eigenvectors w, and associated eigen-
values \.




Kernel PCA

Problem 2: High dimension: computationally expensive

Solution: Perform all vector operations by kernel trick.

k(s,t) = (@(s)[o(t))




Centering in feature space

Data independent Kernel %(x,y) = <g5(x)|g5(y)>

Extend k(x, y) to data dependent Kernel corresponding to ¢,,.

ki (%,y) = (om(X)|om(y)) )
= k(x,y) — Ex[k(x',y)] — Eylk(x,y")]
—I_Ex’,y’[];(xla y/)]




Kernel PCA

Gram matrix: K with K;; := (x;|x;) = kn (x4, X;)
Covariance matrix: C' = E [¢,,(x)dm(x)7]

Data matrix in feature space: ® = (¢(x1), ..., 5(xm))’
Note:

1
K — ®pt C=_o'd
m




Eigenvector relation

Eigensystems: Kv, = [, v, Cw, = \, W,

Relation: If v is an eigenvector of K,

1 1 1 l
C(®'v) = —0'Pd'v = —P'Kv = —d'lv = —(dv)
m m m m

= w := ®'v eigenvector of C.

Consequence: Eigenvectors of C' (size H x H) can be com-
puted indirectly via eigenvectors of K (size m x m).




Kernel PCA

Compute projection P(x) = (P;(x), ..., Py (x))* for point x:

P.(x)
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Spectral clustering

Problem: Clustering (/N clusters) for non-blob data.
Idea: Use a “proximity kernel”: k(x,y) large < x,y close
Resulting K: Proximity table.

Spectral decomposition: Decorrelated components < non-
proximate points

Clustering: First N eigenvectors should correspond to the N
clusters.
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Spectral clustering

Algorithm:

1. Compute K.
2. Compute first NV eigenvectors.

3. Normalize.
4. Perform standard clustering algorithm.

Example: Input data, data after step (2):
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Integral kernels

Integral equations: T'f = g, where f, g are functions.

Integral operator 7' defined by means of integral kernel k:

T = [

Q

k. )F ()dix) = [ ko, 9)f (0p(x)d

Q

Properties:

e 7' is linear (since integral linear)
e L is assumed to be symmetric, i.e. k(x,y) = k(y, x).
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Comparison: Linear algebra

Finite-dim. lin. operator: Represented as matrix Mv = u,
v, u € RY.
Component i of u: u; = » _; Mijv; (%)

Functions instead of vectors: T “infinitely large square matrix”
Infinite-dim. case:

indicesi,7 — variables x,y
M;; —  k(x,y)

D i —  [dz

Analogue to sum ( =, k( X)dx
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Eigensystem of T

Eigenfunctions: T = M\ with A e R, ¢ : RY — R.

Scalar product:

(19}, /f

Orthogonality: f, g are p-orthogonal iff f|g>p —

Analogue to symm. matrices:

e all eigenvalues \ € R
e eigenfunctions are p-orthonormal: Vi, j = {(¢i|;) =
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Nystrom’s method

Approximating 7': Given data x;, ..., x,,,, substitute p,., for p:
. 1 <&

TA) = | K YN (pa(X)x = 3 i, ¥)f ()

1=1

Approximating eigenfunctions: Assuming that 7" ~ T, for
eigenfunction :

M) = (T6)() = (T0)(y) =~ 3 kxi,y)(x)

Interpolation formula for ¢ (y)!
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Nystrom’s method

Approximate p-orthogonality:

1
= (W), & [ X P (X)x = 3 0005 )
k

Spectral decomposition: Kernel represented by eigensystem:

Z Ay (x Z Ay (x

(Linear algebra analogue: K = VAV?))
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Summary: Discretized spectrum

Define: v; := (¢1(x1), ...01(x;))?

We know:

Ky ~ M
<z@z\%> ~
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Out-of-sample extension for spectral methods

Given: Embedding of x4, ..., x,,,, new point x,,,1.

Idea. If x,,,; had been included in training: All eigenvectors
would contain additional component v; ;1.

Approximation property: v 11 ~ (Xmi1)-

With interpolation formula:

R 1 R
Vimt1 = Vi(Xmg1) & — Z k(Xj, Xm41)¥15
m)\l b—1
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Proposed learning criterion

Consider matrix analogue first, for matrix A € R™>*™.
Property utilized: Spectral decomposition A =", A\jv;v}.
Use for successive approximation:
argmin || A — vv?,
A\
. . L L o 1
will recover v = A1vy = eigenpair: Ay := |[v], vy = 5;v.

Iterate: If first (V. — 1) eigenpairs known,

N-1
argmin || A — vv’ — Z Avivilo
\%
=1
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Proposed learning criterion

For kernels: If we could actually optimize w.r.t. a function,

argmin|[k(x, ) ~ B (U(y) — S Ata(a(y)
=1 2

Approximation on sample:

N—-1

2
1 -
argm‘}nm Z (sz — ViU — Alzplﬂplj)
6,9

[=1
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Theoretical results

Prop. 1: Fory € {x1,...,x,,}, the approximation

™m

hi(y) = L Z k(xi,y)

IS exact.

Prop. 2: Convergence of eigenfunctions. If

1. k not data-dependent
2. k bounded
3. (geometric) multiplicity of \; is 1 (and A\; # 0)

then: approximate eigensystem converges to real one.




Theoretical results

Data-dependent case: Additionally require k,, — k uniformly.

Prop. 3: Learning criterion.

1. Optimization of learning criterion equivalent to computation
of corresponding eigendecomposition.

2. Approximate criterion asymptotically converges to exact
one.
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Novelty of results:

Result Novelty
Kernel rep. of spectral methods Few are new.
Common framework Novel.
NystrOm interpolation & prediction | Williams & Seeger, 2001
Prop. 1 & 2: Eigensystem appr. e.g. Anselone (%)
Prop. 3: Learning criterion Basic result in LA/FA.

Previous publication: Neural Comp. 16, 2197-2219, 2004.

*) P. M. Anselone: “Collectively compact operator approximation theory and
applications to integral equations” (1971)
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