
Spectral methods

Some methods:

• Kernel PCA
• MDS
• Spectral Clustering
• Isomap and Locally Linear Embedding (LLE)

Common to all approaches:

• Embedding methods.
• No immediate out-of-sample extension.
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Observation: All methods can be regarded as spectral decom-
positions of a kernel matrix.

Proposed approach: Generic out-of-sample extension by ap-
plication of Nyström formula to kernel operator.
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Principal Component Analysis – PCA

Find components that are most useful for representing data
based on the covariance (scatter) matrix C.

Eigenvectors sorted by decreasing Eigenvalues: provide direc-
tion of highest variance.

Select top N Eigenvectors to project input data into reduced
space that best minimizes the squared-error.

Linear system.
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Kernel PCA

Map data onto a (higher dimension, possibly infinite) feature
space via a data independent function φ̃

φ̃ : x → φ̃(x)

Perform PCA on higher feature space to yield the new (lower
dimensional) space.

Compute (empirical) feature space covariance matrix:

C̃ = Ê
[
φ̃(x)φ̃(x)T

]
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Kernel PCA

Problem 1: Centering

φm(x) = φ̃(x)− 1
m

Σmi=1φ̃(xi)

New data dependent function φm(x)

C = Ê
[
φm(x)φm(x)T

]
Eigen-decomposition to eigenvectors wr and associated eigen-

values λr
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Kernel PCA

Problem 2: High dimension: computationally expensive

Solution: Perform all vector operations by kernel trick.

k(s, t) = 〈φ(s)|φ(t)〉
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Centering in feature space

Data independent Kernel k̃(x,y) =
〈
φ̃(x)|φ̃(y)

〉
Extend k̃(x, y) to data dependent Kernel corresponding to φm.

km(x,y) = 〈φm(x)|φm(y)〉
= k̃(x,y)− Êx′[k̃(x′,y)]− Êy′[k̃(x,y′)]

+Êx′,y′[k̃(x′,y′)]
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Kernel PCA

Gram matrix: K with Kij := 〈xi|xj〉 = km(xi,xj)

Covariance matrix: C = Ê
[
φm(x)φm(x)T

]
Data matrix in feature space: Φ = (φ(x1), ..., φ(xm))t

Note:
K = ΦΦt C =

1
m

ΦtΦ
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Eigenvector relation

Eigensystems: Kvr = lrvr Cwr = λrwr

Relation: If v is an eigenvector of K,

C(Φtv) =
1
m

ΦtΦΦtv =
1
m

ΦtKv =
1
m

Φtlv =
l

m
(Φtv)

⇒ w := Φtv eigenvector of C.

Consequence: Eigenvectors of C (size H × H) can be com-
puted indirectly via eigenvectors of K (size m×m).
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Kernel PCA

Compute projection P (x) = (P1(x), . . . , PN(x))t for point x:

Pr(x) = 〈wr|φm(x)〉 =
〈

1√
lr

Φtvr

∣∣∣∣φm(x)
〉

=

〈
1√
lr

m∑
i=1

φm(xi)vri

∣∣∣∣∣φm(x)

〉

=
1√
lr

m∑
i=1

vri 〈φm(xi)|φm(x)〉

=
1√
lr

m∑
i=1

vrikm(xi,x)

10



Spectral clustering

Problem: Clustering (N clusters) for non-blob data.

Idea: Use a “proximity kernel”: k(x,y) large ⇔ x,y close

Resulting K: Proximity table.

Spectral decomposition: Decorrelated components ↔ non-
proximate points

Clustering: First N eigenvectors should correspond to the N

clusters.
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Spectral clustering

Algorithm:

1. Compute K.
2. Compute first N eigenvectors.
3. Normalize.
4. Perform standard clustering algorithm.

Example: Input data, data after step (2):
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Integral kernels

Integral equations: Tf = g, where f, g are functions.

Integral operator T defined by means of integral kernel k:

(Tf)(y) :=
∫

Ω

k(x,y)f(x)dµ(x) =
∫

Ω

k(x,y)f(x)p(x)dx

Properties:

• T is linear (since integral linear)
• k is assumed to be symmetric, i.e. k(x,y) = k(y,x).
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Comparison: Linear algebra

Finite-dim. lin. operator: Represented as matrix Mv = u,
v, u ∈ Rd.
Component i of u: ui =

∑
jMijvj (*)

Functions instead of vectors: T “infinitely large square matrix”

Infinite-dim. case:

indices i, j → variables x,y
Mij → k(x,y)∑
i →

∫
dx

Analogue to sum (*): g(y) =
∫
Ω
k(x,y)f(x)dx
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Eigensystem of T

Eigenfunctions: Tψ = λψ with λ ∈ R, ψ : Rd→ R.

Scalar product:

〈f |g〉p :=
∫

Ω

f(x)g(x)p(x)dx

Orthogonality: f, g are p-orthogonal iff 〈f |g〉p = 0.

Analogue to symm. matrices:

• all eigenvalues λ ∈ R
• eigenfunctions are p-orthonormal: ∀i, j : 〈ψi|ψj〉p = δij
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Nyström’s method

Approximating T : Given data x1, ...,xm, substitute pemp for p:

(T̂ f)(y) :=
∫

Ω

k(x,y)f(x)pemp(x)dx =
1
m

m∑
i=1

k(xi,y)f(xi)

Approximating eigenfunctions: Assuming that T̂ ≈ T , for
eigenfunction ψ:

λψ(y) = (Tψ)(y) ≈ (T̂ψ)(y) =
1
m

m∑
i=1

k(xi,y)ψ(xi)

Interpolation formula for ψ(y)!
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Nyström’s method

Approximate p-orthogonality:

δij = 〈ψi|ψj〉p ≈
∫

Ω

ψi(x)ψj(x)pemp(x)dx =
1
m

∑
k

ψi(xk)ψj(xk)

Spectral decomposition: Kernel represented by eigensystem:

k(x,y) =
∞∑
l=1

λlψl(x)ψl(y) ≈
N∑
l=1

λlψl(x)ψl(y)

(Linear algebra analogue: K = V ΛV t.)
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Summary: Discretized spectrum

Define: ψ̂l := (ψl(x1), ...ψl(xj))t

We know:

Kψ̂l ≈ λψ̂l〈
ψ̂i|ψ̂j

〉
≈ δij

ψl(y) ≈ 1
mλl

m∑
i=1

k(xi,y)ψ̂li

k(x,y) ≈
N∑
i=1

λlψl(x)ψl(y)
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Out-of-sample extension for spectral methods

Given: Embedding of x1, ...,xm, new point xm+1.

Idea. If xm+1 had been included in training: All eigenvectors
would contain additional component ψ̂l,m+1.

Approximation property: ψ̂l,m+1 ≈ ψl(xm+1).

With interpolation formula:

ψ̂l,m+1 ≈ ψl(xm+1) ≈
1

mλ̂l

m∑
k=1

k(xj,xm+1)ψ̂lj
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Proposed learning criterion

Consider matrix analogue first, for matrix A ∈ Rm×m.

Property utilized: Spectral decomposition A =
∑m
l=1 λlvlv

t
l .

Use for successive approximation:

argmin
v
‖A− vvt‖2

will recover v = λ1v1 ⇒ eigenpair: λ1 := ‖v‖,v1 := 1
λ1

v.

Iterate: If first (N − 1) eigenpairs known,

argmin
v
‖A− vvt −

N−1∑
l=1

λlvlvtl‖2
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Proposed learning criterion

For kernels: If we could actually optimize w.r.t. a function,

argmin
ψ

∥∥∥∥∥k(x,y)− ψ(x)ψ(y)−
N−1∑
l=1

λlψl(x)ψl(y)

∥∥∥∥∥
2

Approximation on sample:

argmin
v

1
m2

∑
i,j

(
Kij − vivj −

N−1∑
l=1

λ̂lψ̂liψ̂lj

)2
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Theoretical results

Prop. 1: For y ∈ {x1, ...,xm}, the approximation

ψl(y) ≈ 1
mλl

m∑
i=1

k(xi,y)ψ̂il

is exact.

Prop. 2: Convergence of eigenfunctions. If

1. k not data-dependent
2. k bounded
3. (geometric) multiplicity of λl is 1 (and λl 6= 0)

then: approximate eigensystem converges to real one.
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Theoretical results

Data-dependent case: Additionally require km→ k uniformly.

Prop. 3: Learning criterion.

1. Optimization of learning criterion equivalent to computation
of corresponding eigendecomposition.

2. Approximate criterion asymptotically converges to exact
one.
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Novelty of results:

Result Novelty
Kernel rep. of spectral methods Few are new.

Common framework Novel.
Nyström interpolation & prediction Williams & Seeger, 2001

Prop. 1 & 2: Eigensystem appr. e.g. Anselone (*)
Prop. 3: Learning criterion Basic result in LA/FA.

Previous publication: Neural Comp. 16, 2197-2219, 2004.

*) P. M. Anselone: “Collectively compact operator approximation theory and
applications to integral equations” (1971)
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