Information Theoretic Model Validation by Approximate Optimization

Authors: Joachim M. Buhmann, Morteza H. Chehreghani, Mario Frank, Andreas P. Streich

Presenter: Cheng Soon Ong

Computer Science Department, ETH Zurich
Overview

- Motivation of information theory for optimization
- Approximation capacity of a cost function
- Examples
 - Binary symmetric channel
 - Cluster validation
 - role mining for role-based access control (RBAC)
 - Robust SVD
Optimization approach to pattern recognition

- **Given:** data $X \in \mathcal{X}$ in data (input) space \mathcal{X}
- **Goal:** Learn structure from data, i.e., interpret data relative to a hypothesis class
- **Hypothesis class** \mathcal{C} with hypotheses (solutions)
 $$c : \mathcal{X} \rightarrow \mathbb{K} \quad \text{(e.g., } \mathbb{B}^n \text{ or } \{1, \ldots, k\}^n)$$
 $$X \mapsto c(X)$$
- **Cost function** to define a partial order on \mathcal{C}
 $$R : \mathcal{C} \times \mathcal{X} \rightarrow \mathbb{R}_{\geq 0}$$
 $$(c, X) \mapsto R(c, X)$$
Pattern recognition and modeling

- Given are data and interpretations of these data, i.e., hypotheses.

- **Modeling** is (partial) ranking of the hypotheses encoded as data dependent costs.
 - Good/poor hypotheses have low/high costs
 - Optimal hypotheses minimize costs and are random variables.

⇒ Search for hypotheses that have low costs on future data, i.e. **generalize** well!
Coding & pattern recognition with noisy data

- **IT:** Space of strings is partitioned by code vectors
- **PR:** Hypothesis class is partitioned by code problems

![Diagram showing partitioning of code vectors and approximation set with minimizer]
Coding by Code Problems

- **Idea:** define a code by transforming a given optimization problem

 \[T = \{ \tau_i \in \mathcal{T} : 1 \leq i \leq 2^{n \rho} \} \]

 transformation set

 \[\mathcal{T} = \{ \tau : R(c, X) = R(\tau \circ c, \tau_X \circ X) \} \]

- Combinatorial optimization: *permutation* of vertices in a graph

- **Identifiable transformations** \(\mathcal{T} \) are **messages**!
Asymptotical error-free communication

\[\lim_{n \to \infty} P(\hat{\tau} \neq \tau_s | \tau_s) = 0 \] is possible if …

- ... mutual information \(I_\beta(\tau_s, \hat{\tau}) \) is bounded by

\[
\rho < I_\beta(\tau_s, \hat{\tau}) \equiv \frac{1}{n} \log_2 \frac{\left| T \right|}{Z_\beta^{(1 \& 2)} Z_\beta^{(1)}}
\-
\frac{\left| C^{(2)} \right|}{Z_\beta^{(2)}} - \log_2 \frac{\left| C^{(2)} \right|}{Z_\beta^{(1 \& 2)}}
\]

Bound calculation involves partition functions for individual and joint costs

\[
Z_\beta^{(\nu)} = \sum_{c \in C(\mathbf{X}^{(\nu)})} \exp(-\beta R(c, \mathbf{X}^{(\nu)})), \quad \nu = 1, 2
\]

\[
Z_\beta^{(1 \& 2)} = \sum_{c \in C(\mathbf{X}^{(1)})} \exp \left(-\beta (R(c, \mathbf{X}^{(1)}) + R(c, \mathbf{X}^{(2)})) \right)
\]
Model Selection by Maximization of Approximation Capacity

- Maximize channel capacity w.r.t. approximation quality β, topology and metric of solution space, cost function $R(\ldots)$
ASC for binary channel consistent with Shannon information theory

- Hypothesis class: set of binary strings \(\xi^{(1)}, \xi^{(2)} \in \{-1, 1\}^n \)

- Communication:
 \(\xi^{(1)} \Rightarrow \xi^{(2)} \)

- Costs of string \(s \): Hamming distance
 \[
 R(s, \xi^{(1)}) = \sum_{i=1}^{n} \mathbb{I}_{\{s_i \neq \xi^{(1)}_i\}}
 \]

- Mutual information:
 \[
 \mathcal{I}_\beta = \ln 2 + (1 - \delta) \ln \cosh \beta - \ln (\cosh \beta + 1)
 \]
 for \((*) \)
 \[
 \frac{d\mathcal{I}_\beta}{d\beta} = 0 \quad \Rightarrow \quad \ln 2 + (1 - \delta) \ln (1 - \delta) + \delta \ln \delta
 \]
ASC selects optimal (true) number of clusters

Experimental Setting:
5 Gaussians, $n=10000$, $d=2$, $k_{\text{max}}=10$
Role-Based Access Control

- Given: Binary user permission matrix
- Discretionary Access-Control:
 Direct Assignments of users to permissions
- Role-Based Access Control (RBAC): Permissions are granted via roles
Role-Mining for RBAC

- **Role-Mining**: Given a user-permission assignment matrix X, find a set of roles U and assignments Z such that $X \approx U \otimes Z$

- **Multi Assignment Clustering**: generative approach including noise model, inference with DA
Synthetic Data: Parameter Accuracy vs. Approximation Capacity

ASC ranking of model variants complies with ranking according to ground truth.

- Computed with knowledge of ground truth
- Computed without knowledge of ground truth
Real-World Data: Prediction Error complies with Approximation Capacity

- **Generalization**: Can roles predict permissions of **new** users?
 1. Use few permissions (20%) to determine role set
 2. Predict hidden/missing permissions (80%).
- **Centroids** with maximal capacity yield minimal generalization error

![Graph](image-url)
Denoising Binary Matrices by truncated SVD

Boolean matrix with 40% random entries

\[
X = USV
\]

Rounding as approximation
\[g(X_k) = \text{round}(X_k)\]

continuous rank-\(k\) approximation
\[X_5 = U_5 S_5 V_5\]
Maximum of approximation capacity selects optimal rank k

- Integrate over variations of the signal matrix U.

\[
\mathcal{I}_\beta(\tau_s, \hat{\tau}) = \frac{1}{n} \log_2 \frac{|\mathcal{T}| Z_{\beta}^{(1 & 2)}}{Z_{\beta}^{(1)} Z_{\beta}^{(2)}}
\]
Conclusion

- **Quantization**: Noise quantizes hypothesis classes \Rightarrow symbols

- These symbols can be used for **coding**!

- Optimal error free coding scheme determines **approximation capacity** of a cost function.

 \Rightarrow Bounds for robust optimization.

 \Rightarrow **Quantization** of hypothesis class measures structure specific information in data.
Future Work

- **Generalization**: replace approximation sets based on cost functions by smoothed outputs of **algorithms** (“smoothed generalization”)

- **Model reduction** in dynamical systems: quantize sets of ODEs or PDEs (systems biology)

- Relate **statistical complexity**, i.e. the approximation capacity, to algorithmic or computational complexity.