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A MATLAB Toolbox for Machine Learning

•Kernel machines with exponential family likelihood [1].

•Object oriented design, for simplicity of use and extendability.

•Automated model selection.

•Automated code generation using Symbolic Math Toolbox.

•Spider/CLOP interface.

•Excellent performance on WCCI-2006 [2], NIPS-2006 and
IJCNN-2007 [3] challenges.

• Freely available under the GNU General Public License (GPL).

Objects

•Models

–@gkm — abstract base class for all generalised kernel ma-
chines, including implementation of iteratively re-weighted
least squares training algorithm.

– Predefined kernel machines:
∗@krr — kernel ridge regression a.k.a. least-squares sup-

port vector machine. Primarily for regression problems.
∗@klr — kernel logistic regression, the preferred model for

classification tasks.
– Additional kernel machines can be generated automatically

using the MATLAB Symbolic Math Toolbox.

•Kernels

–@kernel — abstract base class allowing straightforward
extension of the toolbox by adding new kernels.

– Predefined kernels:
∗@linear
∗@polynomial
∗@rbf
∗More to be added soon!

•Model selection

–@estimator — objects that implement estimators, e.g.
@aloo implementing efficient approximate leave-one-out
cross-validation.

–@criterion — which implement performance criteria,
@nlp implementing negative log-probability.

–@simplex — optimise kernel and regularisation hyper-
parameters using Nelder-Mead simplex algorithm.

•Performance estimation

–@optimized— wrapper facilitating independent model se-
lection in each fold, avoiding selection bias.

–@crossvalidation — perform k-fold and l-o-o cross-
validation for performance evaluation and model selection.

–@splitsample — evaluate performance using indepen-
dent training and test sets.

•CLOP/Spider Interface

Kernel Logistic Regression Example

Step 1 - Generate code for KLR

fix(gkm(’acronym’, ’klr’, ...
’name’, ’kernel logistic regression’, ...
’canonical’, ’log(1+exp(eta))’));

Step 2 - Initialise KLR machine

network = klr(’kernel’, rbf(’eta’, [1;1]), ...
’lambda’, 0.01, ...
’Verbosity’, ’ethereal’);

Step 3 - Perform model selection

selector = simplex(’estimator’, aloo);

net = select(selector, network, x_train, y_train);

Step 4 - Generate test predictions

mu_test = fwd(net, x_test);

Step 5 - Generate performance estimate

estmtr = crossvalidation(’k’,10,’criterion’,erate);

model = optimised(’gkm’,network,’selector’,selector));

err = estimate(estmtr, model, x_train, y_train);

Step 6 - Plot decision surface
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