Nameless

Feature Selection Challenge Attempt
By
Ran Gilad-Bachrach and Amir Navot
Overview

• In most cases we have used standard “out of the box” algorithms
• Obvious modifications for balanced error were done
• A novel feature selection algorithm was introduced (distBased)
• Over fit was probably done by running over too many algorithms with too many parameters
Classification Method

• SVM
 – We have used the SVM toolbox by Gavin Cawley (University of East Anglia, England)

• Naïve Bayes
 – Good-Turing zero correction

• Preceptron
 – Aggressive version (Crammer et al.)
Feature Selection Methods

• MI1
 – features are scored by the mutual information between the feature value and the labels
 – Non binary data, was compared to the median

• MI2
 – same as MI1 while zero valued featured are assumed to be sleeping
Feature Selection Methods – Cont.

- **DistBased**
 - [CGNT02](#) defined the proper margin for prototype based algorithms (Nearest Neighbor, LVQ, SVM-RBF)
 - The margin of an instance is the difference between the distance to the closest negative prototype and the closest positive prototype
 - We selected features that maximizes this margin
Arcene - Observation

- The data has a clear hierarchical structure, which can be revealed by clustering
- The figure shows the mutual distance between instances
- The instances were reordered by k-means
Arcene – Algorithm

- Normalization: The maximum absolute value of each feature was set to 1
- Representation: PCA
- Feature selection: distBased. 81 principal components were used.
- Classification: SVM
 - Kernel: rbf(0.005)
 - C=8
Gisette - Algorithm

• Normalization: The maximum absolute value of each feature was set to 1
• Feature selection: MI1
• Classification: aggressive perceptron with a limit set to 600 (i.e. we require that $y(w \cdot x) > 600$ for each (x,y) in the training set).
Dexter - Algorithm

• Normalization: none
• Feature selection: MI1
• Classification: Transductive SVM
 – Kernel: linear
 – C=10
 – 3 transduction rounds with addition of 15% of the unlabeled sample in each round.
Dorothea - Algorithm

- Normalization: none
- Feature selection: MI2
- Classification:
 - Naïve Bayes
 - Good Turing Zero Correction
Madelon - Algorithm

• Normalization: The maximum absolute value of each feature was set to 1
• Feature selection: distBased
• Classification: Trasductive SVM
 – Kernel: rbf(50)
 – C=5
 – 13 transduction rounds. In each round 10% of the unlabeled data was added.