
NIPS 2003 Feature Selection Workshop

Classification for High Dimensional Problems

Using Bayesian Neural Networks and

Dirichlet Diffusion Trees

Radford M. Neal and Jianguo Zhang

University of Toronto



Outline of talk
1. Why and how of feature selection.

2. Our general approach — use simple techniques to reduce the computational

difficulty of the problem, then apply more sophisticated Bayesian methods.

3. The simple techniques: PCA and significance tests.

4. Bayesian neural networks.

5. The Bayesian neural network models used, with large and small numbers of

features.

6. Dirichlet diffusion trees.

7. The Dirichlet diffusion tree models useds.

Acknowledgements
Thanks to Geoffrey Hinton for use of a computing cluster, funded by CFI.

Support also came from NSERC. Radford Neal holds a Canada Research Chair

in Statistics and Machine Learning.



Why select a subset of the observed features?

You think using only a subset of features will improve performance.

Too many features cause overfitting for maximum likelihood, but not for

good Bayesian methods. Dimensionality can be reduced by other means,

such as principle component analysis (PCA).

You need to save computation time.

This may be necessary, especially for Bayesian methods. But again,

dimensionality can be reduced in other ways.

You don’t want to think too hard about your prior.

The bad effects of bad priors may be greater in high dimensions.

You want to avoid measuring lots of features in future.

To make an optimal tradeoff, you need to know the costs of

measurements and of prediction errors.



The correct Bayesian approach
(ignoring practical difficulties)

Fit the best Bayesian model you can, incorporating your prior beliefs.

The best model is probably complex, and probably uses all the features.

Make predictions using this model for cases you think are

representative of future test cases.

Predictions are found by integrating over the parameter space of the model.

Find the best model using a subset of features, fitting to the predicted

labels in the test cases, penalizing models by the cost of features used.

This is an optimization problem — not involving integration over parameters.

Note: Knowing costs for prediction errors and feature use are essential. Any

method that doesn’t look at costs can’t be making the right trade-off!



How to avoid selecting features
Suppose the number of training cases, n, is much less than the number of

features, p. A general recipe:

Use a learning method that is invariant to rotations in the input space,

and which ignores inputs that are always zero.

Examples: Neural network learning by gradient descent with early stopping, or

Bayesian neural networks with a symmetrical prior on input-hidden weights.

Rotate the training cases so that only n inputs are non-zero for the

training cases, then drop all but one of the zero inputs.

For later exploration, PCA is a good choice.

Rotate test cases accordingly, setting one input to the distance from

the space of training cases.

I made challenge submissions of this sort using Bayesian logistic regression,

neural network, and Gaussian process models. Performance was not bad,

sometimes quite good.



Our pragmatic approach

The number of features for the challenge data sets is too large to be handled

computationally by complex Bayesian models (except for Madelon, barely).

Our strategy:

1. Reduce the number of features by either taking the first k principle

components, or by selecting k of the original features using significance tests

(or use a combination of these).

2. Fit hierarchical Bayesian models that can potentially discover that some of

these k inputs are less relevant than others.

3. If a smaller number of features is desired, use the relevance hyperparameters

from the Bayesian model to pick a smaller subset.

4. Use the validation set to choose among various models found this way; when

validation labels are known, just retrain the previously chosen model(s).

Since the Bayesian models can learn to mostly ignore some inputs, we can make

k fairly big (50-1000), so as to avoid leaving out relevant features.



Dimensionality reduction with PCA
There are probably better dimensionality reduction methods than PCA, but

that’s what we used. One reason is that it’s feasible even when p is huge,

provided n is not too large — time required is of order min(pn2, np2).

Some issues:

• Should features be transformed before PCA? Eg, take square roots.

• Should features be centred? Perhaps not if zero is special.

• Should features be scaled to have the same variance? Perhaps not, if the

original scale carries information about relevance.

• Should principle components be standardized before use? Again, maybe not.

A plausible power transformation was chosen for each feature so as to maximize

correlation with the class. Whether to use these transformations, and the other

choices, were made based on intuition and validation set results.

PCA was done using all the data (training, validation, and test).



Feature selection using significance tests
An initial feature subset was found by simple univariate significance tests.

Assumption: Relevant variables will be at least somewhat relevant on their own.

Three significance tests were used, applied only to features that were non-zero in

at least four training cases:

• Correlation of class with ranks of feature values — sensitive to any

monotonic relationship.

• Correlation of class with binary form of feature (zero/non-zero) — merging

non-zero values may detect relationships that rank correlation doesn’t.

• A runs test on the class labels reordered by increasing feature value (counts

how often adjacent class labels are the same) — can detect non-monotonic

relationships, but less powerful than the other tests.

For all tests, a p-value was found by comparing to the distribution found when

permuting the class labels. Separate p-value thresholds were picked by hand for

each test, and the union of the feature sets found with each test was used.



Bayesian Neural Networks
I used multilayer perceptron networks, with two hidden layers with tanh

activation function. I usually used 25 hidden units in the first layer, and 8 hidden

units in the second layer.

Nets with two hidden layers can easily represent some functions that are harder

to represent with only one hidden layer.

Bayesian learning integrates over the posterior distribution for the network

parameters, rather than picking a single “optimal” set of parameters. This avoids

overfitting.

A hierarchical prior was used, in which the priors for groups of weights were

controlled by higher-level hyperparameters.

It’s all implemented with MCMC, using runs of about a day for each model.

For details, see my book, Bayesian Learning for Neural Networks.



Automatic Relevance Determination (ARD)
Using a hierachical prior, we can automatically determine how relevant each

input is to predicting the class.

We group together the weights on all the connections from a particular input to

the hidden units. Conditional on a “relevance hyperparameter”, the weights in

this group are independent, with mean zero and variance given by the relevance

hyperparameter, which is itself given a higher-level prior.

If an input is irrelevant, its relevance hyperarameter will tend to be small, forcing

the weights from that input to be near zero.

ARD was used adjust the relevance of both the original features, and of the

principle components.



The Arcene data
10000 features, 100 training cases, 44% positive

BayesNN-small

Used 1070 features selected using significance tests.

BayesNN-large

Used 50 principle components, applied to transformed features, with

centering and scaling.

BayesNN-DFT-combo

Used a Dirichlet diffusion tree model, since it gave better results on the

validation set than either of the neural network models.



Arcene: Two highly relevant features

0 100 200 300 400 500 600 700

0
10

0
20

0
30

0
40

0
50

0

Feature 9642

F
ea

tu
re

 6
82

8



Arcene: Two principle components

−40 −20 0 20 40

−
40

−
20

0
20

40

Principle component 2

P
rin

ci
pl

e 
co

m
po

ne
nt

 6



The Gisette data
5000 features, 6000 training cases, 50% positive

BayesNN-small

379 features were selected using significance tests.

BayesNN-large

50 principle components were used, found using centering and scaling.

BayesNN-DFT-combo

Same as BayesNN-large, since the large number of cases makes applying

a Dirichlet diffusion tree model computationally difficult.



The Dexter data
20000 features, 300 training cases, 50% positive

BayesNN-small

Only 1458 features are non-zero in four or more training cases. 303 of

these features were selected using significance tests. A few of these were

picked only because of the runs test.

BayesNN-large

The same as BayesNN-small, since results using principle components

weren’t as good on the validation set.

BayesNN-DFT-combo

Also the same as BayesNN-small, since results with a Dirichlet diffusion

tree model weren’t as good on the validation set.



Dexter: Two highly relevant features

0 100 200 300 400 500 600

0
10

0
20

0
30

0
40

0

Feature 10244 (jittered)

F
ea

tu
re

 1
98

90
 (

jit
te

re
d)



Dexter: Two principle components

−800 −600 −400 −200 0 200

−
40

0
−

20
0

0
20

0
40

0

Principle component 2

P
rin

ci
pl

e 
co

m
po

ne
nt

 3



The Dorothea data
100000 features, 800 training cases, 10% positive

BayesNN-small

500 features were selected using significance tests.

BayesNN-large

50 principle components were found using features that are non-zero in

at least two cases, without centering or scaling. 60 features selected using

ARD hyperparameters were used as well, along with counts of the

number of rare features present.

BayesNN-DFT-combo

Same as BayesNN-large, since results with a Dirichlet diffusion tree

model weren’t as good on the validation set.



The Madelon data
500 features, 2000 training cases, 50% positive

BayesNN-small

17 features found using the ARD hyperparameters from various models

were used, including models using the entire set of features.

BayesNN-large

Same as BayesNN-small, since results using principle components weren’t

as good on the validation set.

BayesNN-DFT-combo

A Dirichlet diffusion tree model had validation error similar to that of

BayesNN-small. Accordingly, we made predictions based on the average

of the predictive probabilities produced by these two models.



Madelon: Two highly relevant features

350 400 450 500 550 600 650

30
0

40
0

50
0

60
0

70
0

Feature 379

F
ea

tu
re

 4
34



Introduction to Dirichlet Diffusion Trees

• Dirichlet Diffusion Tree Prior
– The first point is generated by a simple Gaussian 

diffusion process from time 0 to 1
– The second point follows the path of the first one 

initially.
– The second point diverges from the path at a 

random time t.
– After the divergence, the second point follows a 

Gaussian diffusion process independent of the first 
one.



– The n-th point follows the path of those before it 
initially.

– The n-th point diverges at a random time t
– At a branch, the n-th point selects an old path with 

probability proportional to the numbers of points 
that went each way previously

– After the divergence, it follows a Gaussian diffusion 
process independently.

– The variances and noises of different features may 
be different



• Divergence Function 
– If a point following a path of n points did not 

diverge at time t, the probability of divergence 
during dt is a(t)dt/n.

– With more points passing the way, the probability 
of  divergence for a new point is smaller.



• Selection of Divergence function
– Select a(t) such that                                               

to keep the distribution continuous.
– Two possibilities                                               

or 

∞=∫
1

0
)( dtta

t
cta
−

=
1

)(

2)1(
)(

t
cbta
−

+=





• Markov Chain Sampling for Dirichlet 
Diffusion Tree Models
– The state of the Markov chain used to 

sample from the posterior distribution will 
consist of at least:
• The structure of the tree 
• The divergence times for non-terminal 

nodes
– Other parameters

• Diffusion variance, noise
• Parameters of the divergence function, etc. 



• Updating of the trees 
– The tree structure, divergence time, and node 

locations can all be updated by parent moves.



Methods of classification from trees

• Classify using the structure of the tree
– Use the nearest neighbor
– Use the nearest neighbor with branch weights 

– Take the average over trees from the posterior



• Use (1 - divergence time) as a measure of distance
– Take the average of the divergence times

• Use nearest neighbor method
• Use (1- divergence time) as a measure of dissimilarity

– Construct a further tree from this dissimilarity
• Use a weighted average based on divergence times

– r is selected by cross validation

∑

∑

≠

≠=

−

−

==

ij

rd
ijy

rd

i ij

j

ij

e

e
yP

)1(

)1(
)1( ,1



• Other tree-based classification methods
– Gaussian processes
– The method of Kemp, et al.



• Results for the Arcene dataset and Madelon 
Dataset (on validation sets)

Dissimilarity 

Weighted average 
divergence times

Nearest neighbor with 
branch weight

Number of principle 
components 6/500100/900

--9.01%

10.17%9.25%

7.83%9.99%

MadelonArcene



• Reference
– Neal, R. M. (2003), Density Modeling and Clustering 

Using Dirichlet Diffusion Trees, Bayesian Statistics 7, 
619-629

– Neal, R. M. (2001), Defining priors for distributions 
using Dirichlet diffusion trees. Tech. Rep. No. 0104, 
Department of Statistics,  University of Toronto, 
Canada



Conclusions
• Complex Bayesian models can be used for datasets with large numbers of

features, after reducing dimensionality one way or another.

• The resulting performance is very good.

• Validation set results are a noisy guide to model selection.

• Selecting between Bayesian models is still a difficult problem — particulary

when there are computational issues (did the MCMC really converge?).

• MCMC software used is available from www.cs.toronto.edu/∼radford.


	dftpre.pdf
	Using Dirichlet Diffusion Trees for Classification
	Introduction to Dirichlet Diffusion Trees
	
	Methods of classification from trees
	Thank You!

	dftpre.pdf
	Using Dirichlet Diffusion Trees for Classification
	Introduction to Dirichlet Diffusion Trees
	
	Methods of classification from trees
	Thank You!




