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Abstract

The NIPS 2003 workshops included a feature selection competi-
tion organized by the authors. We provided participants with five
datasets from different application domains and called for classifica-
tion results using a minimal number of features. The competition
took place over a period of 13 weeks and attracted 78 research
groups. Participants were asked to make on-line submissions on
the validation and test sets, with performance on the validation set
being presented immediately to the participant and performance
on the test set presented to the participants at the workshop. In
total 1863 entries were made on the validation sets during the
development period and 135 entries on all test sets for the final
competition. The winners used a combination of Bayesian neural
networks with ARD priors and Dirichlet diffusion trees. Other top
entries used a variety of methods for feature selection, which com-
bined filters and/or wrapper or embedded methods using Random
Forests, kernel methods, or neural networks as a classification en-
gine. The results of the benchmark (including the predictions made
by the participants and the features they selected) and the scor-
ing software are publicly available. The benchmark is available at
www.nipsfsc.ecs.soton.ac.uk for post-challenge submissions to
stimulate further research.

1 Introduction

Recently, the quality of research in Machine Learning has been raised by the sus-
tained data sharing efforts of the community. Data repositories include the well
known UCI Machine Learning repository [13], and dozens of other sites [10]. Yet,
this has not diminished the importance of organized competitions. In fact, the
proliferation of datasets combined with the creativity of researchers in designing



experiments makes it hardly possible to compare one paper with another [12]. A
number of large conferences have regularly organized competitions (e.g. KDD,
CAMDA, ICDAR, TREC, ICPR, and CASP). The NIPS workshops offer an ideal
forum for organizing such competitions. In 2003, we organized a competition on
the theme of feature selection, the results of which were presented at a workshop
on feature extraction, which attracted 98 participants. We are presently preparing
a book combining tutorial chapters and papers from the proceedings of that work-
shop [9]. In this paper, we present to the NIPS community a concise summary of
our challenge design and the findings of the result analysis.

2 Benchmark design

We formatted five datasets (Table 1) from various application domains. All datasets
are two-class classification problems. The data were split into three subsets: a
training set, a validation set, and a test set. All three subsets were made available
at the beginning of the benchmark, on September 8, 2003. The class labels for the
validation set and the test set were withheld. The identity of the datasets and of
the features (some of which were random features artificially generated) were kept
secret. The participants could submit prediction results on the validation set and get
their performance results and ranking on-line for a period of 12 weeks. By December
1st, 2003, which marked the end of the development period, the participants had to
turn in their results on the test set. Immediately after that, the validation set labels
were revealed. On December 8th, 2003, the participants could make submissions of
test set predictions, after having trained on both the training and the validation
set. Some details on the benchmark design are provided in this Section.

Challenge format

We gave our benchmark the format of a challenge to stimulate participation. We
made available an automatic web-based system to submit prediction results and
get immediate feed-back, inspired by the system of the NIPS2000 and NIPS2001
unlabelled data competitions [4, 5]. However, unlike what had been done for these
other competitions, we used a “validation set” to assess performance during the
development period, and a separate “test set” for final scoring.

During development participants could submit validation results on any of the five
datasets proposed (not necessarily all). Competitors were required to submit results
on all five test sets by the challenge deadline to be included in the final ranking. This
avoided a common problem of “multiple track” benchmarks in which no conclusion
can be drawn because too few participants enter all tracks.

To promote collaboration between researchers, reduce the level of anxiety, and let
people explore various strategies (e.g. “pure” methods and “hybrids”), we allowed
participating groups to submit a total of five final entries on December 1st and five
entries on December 8th.

Our format was very successful: it attracted 78 research groups who competed
for 13 weeks and made (submitted) a total of 1863 entries. Twenty groups were
eligible for being ranked on December 1st (56 submissions1), and 16 groups on
December 8th (36 submissions.) The feature selection benchmark web site at
www.nipsfsc.ecs.soton.ac.uk remains available as a resource for researchers in
the feature selection.

1After imposing a maximum of 5 submissions per group and eliminating some incom-
plete submissions, there remained 56 eligible submissions out of the 135 received.



Table 1: NIPS 2003 challenge datasets. For each dataset we show the domain
it was taken from, its type (dense, sparse, or sparse binary), the number of features,
the percentage of probes, and the number of examples in the training, validation,
and test sets. All problems are two-class classification problems.

Dataset Domain Type #Fe %Pr #Tr #Val #Te

Arcene Mass Spectrometry Dense 10000 30 100 100 700
Dexter Text classification Sparse 20000 50 300 300 2000
Dorothea Drug discovery Sparse binary 100000 50 800 350 800
Gisette Digit recognition Dense 5000 30 6000 1000 6500
Madelon Artificial Dense 500 96 2000 600 1800

The challenge datasets

Until the late 90s most published papers on feature selection considered datasets
with less than 40 features2 (see [1, 11] from a 1997 special issue on relevance for
example). The situation has changed considerably in the past few years, and in
the 2003 special issue we edited for JMLR including papers from the proceedings
of the NIPS 2001 workshop [7], most papers explore domains with hundreds to
tens of thousands of variables or features. The applications are driving this effort:
bioinformatics, chemistry (drug design, cheminformatics), text processing, pattern
recognition, speech processing, and machine vision provide machine learning prob-
lems in very high dimensional spaces, but often with comparably few examples.

Feature selection is a particular way of tackling the problem of space dimension-
ality reduction. The necessary computing power to handle large datasets is now
available in simple laptops, so there is a proliferation of solutions proposed for such
feature selection problems. Yet, there does not seem to be an emerging unity of
experimental design and algorithms. We formatted five datasets for the purpose of
benchmarking variable selection algorithms (see Table 1.)

The datasets were chosen to span a variety of domains and difficulties (the input
variables are continuous or binary, sparse or dense; one dataset has unbalanced
classes.) One dataset (Madelon) was artificially constructed to illustrate a par-
ticular difficulty: selecting a feature set when no feature is informative by itself.
We chose datasets that had sufficiently many examples to create a large enough
test set to obtain statistically significant results [6]. To prevent researchers familiar
with the datasets to have an advantage, we concealed the identity of the datasets
during the benchmark. We performed several preprocessing and data formatting
steps, which contributed to disguising the origin of the datasets. In particular, we
introduced a number of features called probes. The probes were drawn at random
from a distribution resembling that of the real features, but carrying no information
about the class labels. Such probes have a function in performance assessment: a
good feature selection algorithm should eliminate most of the probes. The details
of data preparation can be found in a technical memorandum [6].

2In this paper, we do not make a distinction between features and variables. The
benchmark addresses the problem of selecting input variables. Those may actually be
features derived from the original variables through preprocessing.



Table 2: We show the top entries sorted by their score (times 100), the balanced
error rate in percent (BER) and corresponding rank in parenthesis, the area under
the ROC curve times 100 (AUC) and corresponding rank in parenthesis, the per-
centage of features used (Fe), and the percentage of probes in the features selected
(Pr).

(a) December 1st 2003 challenge results.

Method (Team) Score BER AUC Fe Pr

BayesNN-DFT (Neal/Zhang) 88.0 6.84 (1) 97.22 (1) 80.3 47.8
BayesNN-DFT (Neal/Zhang) 86.2 6.87 (2) 97.21 (2) 80.3 47.8
BayesNN-small (Neal) 68.7 8.20 (3) 96.12 (5) 4.7 2.9
BayesNN-large (Neal) 59.6 8.21 (4) 96.36 (3) 60.3 28.5
RF+RLSC (Torkkola/Tuv) 59.3 9.07 (7) 90.93 (29) 22.5 17.5
final2 (Chen) 52.0 9.31 (9) 90.69 (31) 24.9 12.0
SVMBased3 (Zhili/Li) 41.8 9.21 (8) 93.60 (16) 29.5 21.7
SVMBased4 (Zhili/Li) 41.1 9.40 (10) 93.41 (18) 29.5 21.7
final1 (Chen) 40.4 10.38 (23) 89.62 (34) 6.2 6.1
transSVM2 (Zhili) 36.0 9.60 (13) 93.21 (20) 29.5 21.7
BayesNN-E (Neal) 29.5 8.43 (5) 96.30 (4) 96.8 56.7
Collection2 (Saffari) 28.0 10.03 (20) 89.97 (32) 7.7 10.6
Collection1 (Saffari) 20.7 10.06 (21) 89.94 (33) 32.3 25.5

(b) December 8th 2003 challenge results.

Method (Team) Score BER AUC Fe Pr

BayesNN-DFT (Neal/Zhang) 71.4 6.48 (1) 97.20 (1) 80.3 47.8
BayesNN-large (Neal) 66.3 7.27 (3) 96.98 (3) 60.3 28.5
BayesNN-small (Neal) 61.1 7.13 (2) 97.08 (2) 4.7 2.9
final 2-3 (Chen) 49.1 7.91 (8) 91.45 (25) 24.9 9.9
BayesNN-large (Neal) 49.1 7.83 (5) 96.78 (4) 60.3 28.5
final2-2 (Chen) 40.0 8.80 (17) 89.84 (29) 24.6 6.7
Ghostminer1 (Ghostminer) 37.1 7.89 (7) 92.11 (21) 80.6 36.1
RF+RLSC (Torkkola/Tuv) 35.4 8.04 (9) 91.96 (22) 22.4 17.5
Ghostminer2 (Ghostminer) 35.4 7.86 (6) 92.14 (20) 80.6 36.1
RF+RLSC (Torkkola/Tuv) 34.3 8.23 (12) 91.77 (23) 22.4 17.5
FS+SVM (Lal) 31.4 8.99 (19) 91.01 (27) 20.9 17.3
Ghostminer3 (Ghostminer) 26.3 8.24 (13) 91.76 (24) 80.6 36.1
CBAMethod3E (CBAGroup) 21.1 8.14 (10) 96.62 (5) 12.8 0.1
CBAMethod3E (CBAGroup) 21.1 8.14 (11) 96.62 (6) 12.8 0.1
Nameless (Navot/Bachrach) 12.0 7.78 (4) 96.43 (9) 32.3 16.2

Performance assessment

Final submissions qualified for scoring if they included the class predictions for
training, validation, and test sets for all five tasks proposed, and the list of features
used. Optionally, classification confidence values could be provided. Performance
was assessed using several metrics:

• BER: The balanced error rate, that is the average of the error rate of the
positive class and the error rate of the negative class. This metric was used
because some datasets (particularly Dorothea) are unbalanced.

• AUC: Area under the ROC curve. The ROC curve is obtained by varying a
threshold on the discriminant values (outputs) of the classifier. The curve
represents the fraction of true positive as a function of the fraction of false
negative. For classifiers with binary outputs, BER=1-AUC.



• Ffeat: Fraction of features selected.
• Fprobe: Fraction of probes found in the feature set selected.

We ranked the participants with the test set results using a score combining BER,
Ffeat and Fprobe. Briefly: We used the McNemar test to determine whether clas-
sifier A is better than classifier B according to the BER with 5% risk yielding to a
score of 1 (better), 0 (don’t know) or 1 (worse). Ties (zero score) were broken with
Ffeat (if the relative difference in Ffeat was larger than 5%.) Remaining ties were
broken with Fprobe. The overall score for each dataset is the sum of the pairwise
comparison scores (normalized by the maximum achievable score, that is the num-
ber of submissions minus one.) The code is provided on the challenge website. The
scores were averaged over the five datasets. Our scoring method favors accuracy
over feature set compactness.

Our benchmark design could not prevent participants from “cheating” in the fol-
lowing way. An entrant could “declare” a smaller feature subset than the one used
to make predictions. To deter participants from cheating, we warned them that we
would be performing a stage of verification. We performed several checks as detailed
in [9] and did not find any entry that should be suspected of being fraudulent.

3 Challenge results

The overall scores of the best entries are shown in Table 2. The main features of
the methods of the participants listed in that table are summarized in Table 3. The
analysis of this section also includes the survey of ten more top ranking participants.

Winners

The winners of the benchmark (both December 1st and 8th) are Radford Neal and
Jianguo Zhang, with a combination of Bayesian neural networks [14] and Dirich-
let diffusion trees [15]. Their achievements are significant since they win on the
overall ranking with respect to our scoring metric, but also with respect to the bal-
anced error rate (BER), the area under the ROC curve (AUC), and they have the
smallest feature set among the top entries that have performance not statistically
significantly worse. They are also the top entrants December 1st for Arcene and
Dexter and December 1st and 8th for Dorothea.

Two aspects of their approach were the same for all data sets:

• They reduced the number of features used for classification to no more
than a few hundred, either by selecting a subset of features using simple
univariate significance tests, or by Principal Component Analysis (PCA)
performed on all available labeled and unlabeled data.

• They then applied a classification method based on Bayesian learning, using
an Automatic Relevance Determination (ARD) prior that allows the model
to determine which of these features are most relevant.

Bayesian neural network learning with computation by Markov chain Monte Carlo
(MCMC) is a well developed technology [14]. Dirichlet diffusion trees are a new
Bayesian approach to density modeling and hierarchical clustering. As allowed by
the challenge rules, the winners constructed these trees using both the training
data and the unlabeled data in the validation and test sets. Classification was then
performed with the k-nearest neighbors method, using the metric induced by the
tree.



Table 3: Methods employed by the challengers. The classifiers are grouped
in four categories: N - neural network, K - SVM or other kernel method, T -
tree classifiers (none found in the top ranking methods), O - other. The feature
selection engines (Fengine) are grouped in three categories: C - single variable
criteria including correlation coefficients, T - tree classifiers or RF used as a filter
E - Wrapper or embedded methods. The search methods are identified by: E -
embedded, R - feature ranking, B - backward elimination, S - more elaborated
search.

Team Classifier Fengine Fsearch Ensemble Transduction

Neal/Zhang N/O C/E E Yes Yes
Torkkola/Tuv K T R Yes No
Chen/Lin K C/T/E R/E No No
Zhili/Li K C/E E No Yes
Saffari N C R Yes No
Ghostminer K C/T B Yes No
Lal et al K C R No No
CBAGroup K C R No No
Bachrach/Navot K/O E S No No

Other methods employed

We group methods into coarse categories to draw useful conclusions. Our findings
include:

Feature selection The winners and several top ranking challengers use a combi-
nation of filters and embedded methods3. Several high ranking participants
obtain good results using only filters, even simple correlation coefficients.
The second best entrants use Random Forests, an ensemble of tree classi-
fiers, to perform feature selection [3].4 Search strategies are generally un-
sophisticated (simple feature ranking, forward selection or backward elim-
ination.) Only 2 out of 19 in our survey used a more sophisticated search
strategy. The selection criterion is usually based on cross-validation. A
majority use K-fold, with K between 3 and 10. Only one group used “ran-
dom probes” purposely introduced to track the fraction of falsely selected
features. One group used the area under the ROC curve computed on the
training set.

Classifier Kernel methods [16] are most popular: 7/9 in Table 3 and 12/19 in
the survey. Of the 12 kernel methods employed, 8 are SVMs. In spite of
the high risk of overfitting, 7 of the 9 top groups using kernel methods
found that Gaussian kernels gave them better results than the linear kernel
on Arcene, Dexter, Dorothea, or Gisette (for Madelon all best
ranking groups used a Gaussian kernel.)

Ensemble methods Some groups relied on a committee of classifiers to make the
final decision. The techniques to build such committee include sampling

3We distinguish embedded methods that have a feature selection mechanism built into
the learning algorithm from wrappers, which perform feature selection by using the clas-
sifier as a black box.

4Random Forests (RF) are classification techniques with an embedded feature selection
mechanism. The participants used the features generated by RF, but did not use RF for
classification.



from the posterior distribution using MCMC [14] and bagging [2]. Most
groups that used ensemble methods reported improved accuracy.

Transduction Since all the datasets were provided since the beginning of the
benchmark (validation and test set deprived of their class labels), it was
possible to make use of the unlabelled data as part of learning (sometimes
referred to as transduction [17]). Only two groups took advantage of that,
including the winners.

Preprocessing Centering and scaling the features was the most common pre-
processing used. Some methods required discretization of the features. One
group normalized the patterns. Principal Componant Analysis (PCA) was
used by several groups, including the winners, as a means of constructing
features.

4 Conclusions and future work

The challenge demonstrated both that feature selection can be performed
effectively and that eliminating meaningless features is not critical to
achieve good classification performance. By design, our datasets include many
irrelevant “distracters” features, called “probes”. In contrast with redundant fea-
tures, which may not be needed to improve accuracy but carry information, those
distracters are “pure noise”. It is surprising that some of the best entries use all
the features. Still, there is always another entry close in performance, which uses
only a small fraction of the original features.

The challenge outlined the power of filter methods. For many years, filter meth-
ods have dominated feature selection for computational reasons. It was understood
that wrapper and embedded methods are more powerful, but too computationally
expensive. Some of the top ranking entries use one or several filters as their only
selection strategy. A filter as simple as the Pearson correlation coefficient proves
to be very effective, even though it does not remove feature redundancy and there-
fore yields unnecessarily large feature subsets. Other entrants combined filters and
embedded methods to further reduce the feature set and eliminate redundancies.

Another important outcome is that non-linear classifiers do not necessarily overfit.
Several challenge datasets included a very large number of features (up to 100,000)
and only a few hundred examples. Therefore, only methods that avoid overfitting
can succeed in such adverse aspect ratios. Not surprisingly, the winning entries
use as classifies either ensemble methods or strongly regularized classifiers. More
surprisingly, non-linear classifiers often outperform linear classifiers. Hence, with
adequate regularization, non-linear classifiers do not overfit the data, even when the
number of features exceeds the number of examples by orders of magnitude.

Principal Component Analysis was successfully used by several researchers to reduce
the dimension of input space down to a few hundred features, without any knowledge
of the class labels. This was not harmful to the prediction performances and greatly
reduced the computational load of the learning machines.

The analysis of the challenge results revealed that hyperparameter selection may
have played an important role in winning the challenge. Indeed, several groups
were using the same classifier (e.g. an SVM) and reported significantly different
results. We have started laying the basis of a new benchmark on the theme of
model selection and hyperparameter selection [8].
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