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Introduction 
We prepared four datasets for the first challenge on causality we organized for the World 
Congress on Computational Intelligence, WCCI 2008. The focus of this challenge, 
entitled “Causation and Prediction”, was on the evaluation of causal modeling 
techniques, aiming at predicting the effect of  “interventions" performed by an external 
agent. Examples of that problem are found in the medical domain to predict the effect of 
a drug prior to administering it, or in econometrics to predict the effect of a new policy 
prior to issuing it. We concentrated on a given target variable to be predicted (e.g., health 
status of a patient) from a number of candidate predictive variables or “features" (e.g., 
risk factors in the medical domain). We limited ourselves to binary target variables 
(two-class classification problems), but the input variables are either binary or 
continuous. For each task, a training set drawn from a “natural" distribution is given 
and three test sets: one test set from the same distribution as the training set and two 
test sets obtained after an external agent manipulated certain variables (i.e. set them 
to arbitrary values, not drawn from the natural distribution). The target variable itself is 
never manipulated and it is assumed that the external agent interventions do not alter the 
mechanisms by which one variable is determined by the value of others. The participants 
were asked to provide predictions of the target variable on test data and the list of 
variables (features) used to make predictions. The challenge platform remains open for 
post-challenge submissions (see http://clopinet.com/causality). The datasets were also 
used for the task LOCANET, which was part of the second causality challenge we 
organized for the Neural Information Processing Systems conference (NIPS 2008). The 
goal of LOCANET was to uncover the LOcal CAusal NETwork around the target. This 
report was not available to the participants of the challenges. 
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Table 1: Datasets of the causation and prediction challenge. The datasets of the 
challenge are indicated in boldface. Two other toy datasets (LUCAS and LUCAP) were 
used for illustration purpose. 
Dataset Description Var. type Var. # Train Test 
LUCAS Toy example (Bayes net) binary 11 10000 20000 
LUCAP Toy example (Bayes net + probes) binary 143 10000 20000
REGED Genomics re-simulated numeric 999 500 20000
SIDO Pharmacology (real data + probes) binary 4932 12678 10000
CINA Marketing (real data + probes) mixed 132 16033 10000
MARTI Same as REGED + correlated noise numeric 1024 500 20000
 
Brief description of the data 

• REGED is a dataset generated by a simulator of gene expression data, which was 
trained on real DNA microarray data. The target variable is lung cancer subtype. 
Hence, the task is to discover genes, which trigger disease or are a consequence of 
disease. The manipulations simulate the effect of agents such as drugs and/or 
RNA silencing. For REGED1, the list of manipulated variable is provided, but not 
for REGED2. REGED has 999 features, of which the Markov blanket contains 2 
direct causes, 13 direct effects and 6 spouses in REGED0, but only 2 direct 
causes, 6 direct effects and 4 spouses in REGED1, and 2 direct causes in 
REGED2. 

• SIDO consists of real data, from a drug discovery problem. The variables 
represent molecular descriptors of pharmaceutical compounds, whose activity on 
the HIV virus must be determined (the target variable). Knowing which molecule 
feature is a cause of activity would be of great help to chemical engineers to 
design new compounds. To test the efficacy of causal discovery algorithm, 
artificial "distractor" variables (called "probes") were added, which are "non-
causes" of the target. All the probes are manipulated in the test sets SIDO1 and 
SIDO2. The probes must be filtered out to get a good causal discovery score and 
good prediction performance on test data. SIDO has 4932 features, of which 1644 
real features and 3288 probes.  

• CINA is also a real dataset. The problem is to predict the revenue level of people 
from census data (marital status, years of study, gender, etc.). As a causal 
discovery problem, the task is to find causes, which might influence revenue. 
Similarly as for SIDO, artificial variables (probes) were added.  CINA has 132 
features, of which 44 real features and 88 probes; all probes are manipulated in 
CINA1 and 2.  

• MARTI is a noisy version of REGED. Correlated noise was added to simulate 
measurement artifacts and introduce spurious relationships between variables. 
This dataset illustrates that without proper calibration/normalization of data, 
causal discovery algorithms may yield wrong causal structures. MARTI has 1024 
features and the same causal graph as REGED. However, 25 calibrant variables 
were added to help taking out the noise. 
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Overall method: 
Preparing the data included the following steps: 

- Adding artificial variables (probes) in real datasets. 
- Preprocessing data to obtain features in the same numerical range (0 to 999 for 

continuous data and 0/1 for binary data). 
- Randomizing the order of the patterns and the features to homogenize the data. 
- Splitting the data into training and test set.  

The classification results were evaluated with the Area under the ROC Curve (AUC) on 
test data. The target values on test examples were never revealed. The web site remains 
available to assess performances of new algorithms. No validation set was used to 
provide on-line feed-back to the participants during the challenge. Rather, the participants 
submitted results on test data and, during the development period, obtained a coarse 
information on the web site about their ranking (in which quartile their submission 
ranked).  
Although the participants were strictly evaluated on prediction performance of the target 
variable, other metrics were computed to assess the correlation between correct causal 
structure discovery and correct target value predictions. To assess causal structure 
discovery, an index measuring the similarity of the feature set to the Markov boundary of 
the post-manipulation distribution was calculated (see the website of the challenge for 
details). In a follow up challenge (NIPS 2008), we asked the participants to return the 
depth 3 local structure, and we assessed its correctness with an edit distance to the true 
graph (see http://www.causality.inf.ethz.ch/data/LOCANET.html).  
 
Real and artificial data: 

We use two types of data: 
• Re-simulated data: We train a causal model with real data. The model is then 

used to generate artificial training and test data for the challenge. Truth values of 
causal relationships are known for the data generating model and used for scoring 
causal discovery results. REGED is an example of re-simulated dataset. 

• Real data with probe variables: We use a dataset of real samples. Some of the 
variables may be causally related to the target and some may be predictive but 
non-causal. The nature of the causal relationships of the variables to the target is 
unknown (although domain knowledge may allow us to validate the discoveries to 
some extent). We have added to the set of real variables a number of distractor 
variables called “probes”, which are generated by an artificial stochastic process, 
including explicit functions of some of the real variables, other artificial variables, 
and/or the target. All probes are non-causes of the target, some are completely 
unrelated to the target. The identity of the probes in concealed. The fact that truth 
values of causal relationships are known only for the probes affects the evaluation 
of causal discovery, which is less reliable than for artificial data. 

 
We give in appendix details about the method we used to generate random probes. 
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Evaluation: 

For the first causality challenge “Causation and Prediction” organized for WCCI 2008, 
the participants were asked to return prediction scores or discriminant values v for the 
target variable on test examples, and a list of features used for computing the prediction 
scores, sorted in order of decreasing predictive power, or unsorted. The classification 
decision is made by setting a threshold µ on the discriminant value v: predict the positive 
class if v > µ and the negative class otherwise. The participants could optionally provide 
results for nested subsets of features, varying the subset size by powers of 2 (1, 2, 4, 8, 
etc.). Two scores were used: 

• Tscore: The participants were ranked according to the area under the ROC curve 
(AUC) computed for test examples (referred to as Tscore), which is the area under 
the curve plotting sensitivity vs. (1¡ specificity) when the threshold µ is varied (or 
equivalently the area under the curve sensitivity vs. specificity). We call 
“sensitivity” the error rate of the positive class and “specificity” the error rate of 
the negative class. The AUC is a standard metric in classification. If results were 
provided for nested subsets of features, the best Tscore was retained. There are 
several ways of estimating error bars for the AUC. We use a simple heuristic, 
which gives us approximate error bars, and is fast and easy to implement: we find 
on the AUC curve the point corresponding to the largest balanced accuracy BAC 
= 0.5 (sensitivity + specificity). We then estimate the standard deviation of the 
BAC as: σ = (1/2) sqrt( p+(1-p+)/m+ + p-(1-p-)/m-), where m+ is the number of 
examples of the positive class, m- is the number of examples of the negative class, 
and p+ and p- are the probabilities of error on examples of the positive and 
negative class, approximated by their empirical estimates, the sensitivity and the 
specificity. 

• Fscore: We also computed other statistics, which were not used to rank 
participants, but used in the analysis of the results. Those included the number of 
features used by the  participants called “Fnum”, and a statistic assessing the 
quality of causal discovery in the feature set selected called “Fscore”. As with the 
Tscore, we provided quartile feed-back   on Fnum and Fscore during the 
competition. For the Fscore, we used the AUC for the problem of separating 
features belonging to the Markov blanket of the test set distribution vs. other 
features. Details are provided on the web site of the challenge. As it turns out, this 
statistic correlates poorly with the Tscore. After experimenting with various 
scores, we found better alternatives. 

• New Fscore. We ended up using as the new Fscore the Fmeasure for REGED and 
MARTI and the precision for SIDO and CINA, after experimenting with various 
alternative measures inspired by information retrieval. We use the following 
definitions: precision = tp=(tp + fp), recall = tp=(tp + fn) (also called sensitivity), 
and Fmeasure = 2 precision recall / (precision + recall). Our explorations indicate 
that precision, recall, and Fmeasure correlate well with Tscore for artificially 
generated datasets (REGED and MARTI). The Fmeasure, which captures the 
tradeoff between precision and recall, is a good measure of feature set quality for 
these datasets. However, recall correlates poorly with Tscore for SIDO and CINA, 
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which are datasets of real variables with added artificial “probes”. In these cases, 
we approximate the recall by the fraction of real variables recalled (present in the 
selected feature set), which can be very different from the true recall that is the 
fraction of relevant variables. For instance, if many real variables are irrelevant, a 
good causal discovery algorithm might eliminate them, thus obtaining a poor 
estimated recall. Hence, we can only use precision as of feature set quality for 
those datasets. 

 
For the LOCANET task of the second causality challenge (NIPS 2008 Pot-luck 
Challenge), we assessed performance by comparing the local causal network (of depth 3) 
to the actual local causal network, using an edit distance. A confusion matrix Cij was 
computed, recording the number of relatives confused for another type of relative, among 
the 14 types of relatives in depth 3 networks. A cost matrix Aij, was then applied to 
account for the distance between relatives (computed with an edit distance as the number 
of substititions, insertion, or deletion to go from one string to the other, using the string 
description described above). The score of the solution was computed as: 

S = sumij Aij Cij 

Cost matrix (Aij): 

Depth Desired  1 1 2 2 2 2 3 3 3 3 3 3 3 3 X 
Obtained Relationship  P C Sp GC Si GP GGP uud N PS SC IL CP GGC Other

   u d du dd ud uu uuu uud udd udu ddu duu dud ddd  
1 Parents u 0 1 1 2 1 1 2 2 2 2 2 2 2 3 4

1 Children d 1 0 1 1 1 2 3 2 2 2 2 2 2 2 4

2 Spouses du 1 1 0 1 2 1 2 2 2 1 1 1 1 2 4

2 Gchildren dd 2 1 1 0 1 2 3 2 1 2 1 2 1 1 4

2 Siblings ud 1 1 2 1 0 1 2 1 1 1 2 2 1 2 4

2 Gparents uu 1 2 1 2 1 0 1 1 2 1 2 1 2 3 4

3 Ggparents uuu 2 3 2 3 2 1 0 1 2 1 2 1 2 3 4

3 Uncles/Aunts uud 2 2 2 2 1 1 1 0 1 2 3 2 1 2 4

3 Nieces/Nephews udd 2 2 2 1 1 2 2 1 0 1 2 3 2 1 4

3 Parents of siblings udu 2 2 1 2 1 1 1 2 1 0 1 2 2 2 4

3 Spouses of children ddu 2 2 1 1 2 2 2 3 2 1 0 1 2 1 4

3 Parents in law duu 2 2 1 2 2 1 1 2 3 2 1 0 1 2 4

3 Children of spouses dud 2 2 1 1 1 2 2 1 2 2 2 1 0 1 4

3 Ggchildren ddd 3 2 2 1 2 3 3 2 1 2 1 2 1 0 4

X Other  4 4 4 4 4 4 4 4 4 4 4 4 4 4 0

 
For artificially generated data (REGED and MARTI), the ground truth for the target local 
neighborhood was determined by the generative model. For real data with artificial 
"probe" variables (SIDO and CINA), we do not have ground truth for the relationships of 
the real variables to the target. The score was computed on the basis of the artificial 
variables only.  
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Data formats: 
All the data sets are in the same format and include 4 files in text format:  
dataname.param: Parameters and statistics about the data  
dataname_train.data: Training set (a sparse or a regular matrix, patterns in lines, 
features in columns).   
dataname_test.data: Test set.  
dataname_train.targets: Labels (truth values of the classes) for training examples.  
The matrix data formats used are a space delimited file with a new-line character at the 
end of each line. 
The results on each dataset should be formatted in 3 ASCII files:   
dataname_train.predict: a discriminant value for training set output (a discriminant 
value is a score, which is large for examples of the positive class and small for examples 
of the negative class). 
dataname_test.predict: a discriminant value for test set output. 
dataname_feat.slist: a sorted list of features used. 
or 
dataname_feat.ulist: an unsorted list of features used. 
Single predictions for each training or test examples could be provided, or multiple 
predictions corresponding to nested tested subsets of features could be given in the form 
of a data table (see the website of the challenge for details). 
 
Dataset A: REGED 
 

1) Topic 
REGED stands for  REsimulated Gene Expression Dataset. The goal of REGED is to 
find genes, which could be responsible of lung cancer subtype. The data are “re-
simulated”, i.e. generated by a model derived from real human lung-cancer microarray 
gene expression data. From the causal discovery point of view, it is important to separate 
genes whose activity cause lung cancer from those whose activity is a consequence of the 
disease.  
We propose three tasks, REGED0, REGED1, and REGED2. All three datasets includes 
999 features, the same 500 training examples, and different test sets of 20000 examples. 
The target variable is binary; it separates adenocarcinoma samples from squamous 
samples. The three tasks differ in the test data distribution, which results from various 
types of manipulations: 
REGED0: No manipulation (distribution identical to the training data). 
REGED1: The following variables are manipulated:  
20, 27, 36, 70, 82, 83, 85, 91, 118, 125, 139, 143, 160, 169, 176, 185, 191, 204, 219, 224, 
229, 239, 243, 251, 252, 269, 281, 282, 295, 297, 301, 319, 320, 321, 342, 350, 357, 359, 
361, 378, 387, 407, 409, 412, 429, 430, 469, 472, 499, 501, 507, 512, 540, 545, 552, 561, 
566, 572, 580, 586, 593, 618, 622, 637, 651, 663, 674, 681, 683, 686, 690, 702, 727, 754, 
762, 764, 773, 786, 805, 815, 835, 861, 872, 873, 877, 880, 889, 904, 935, 936, 939, 942, 
949, 962, 977, 985, 989, 991, 992, 994. 
REGED2: Many variables are manipulated, including all the consequences of the target. 
When a manipulation is performed, the values of the manipulated variables are clamped 
to given values by an "external agent". All other variable values are obtained after the 
system stabilizes when it is let to evolve according to its own dynamics. 
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2) Sources 
a. Original owners 

Alexander Statnikov and Constantin F. Aliferis 
References: 

• Aliferis, C.F. and Statnikov, A. (2007) High-Fidelity Resimulations from High-
Throughput Data. Technical Report DSL 07-03, Discovery Systems Laboratory, 
Vanderbilt University. 

b. Donor of database 
This version of the database was prepared for the WCCI2008 by the Causality 
Workbench team. 

c. Date prepared: Summer 2007. 
d. Date released for the challenge: December 2007. 

 
3) Past usage 

Used for the two first challenges organized by the Causality Workbench Team: (1) the 
Causation and Prediction Challenge (WCCI 2008),  (2)  the NIPS 2008 Pot-Luck 
challenge, as part of the LOCANET task (see http://clopinet.com/causality). 
 

4) Experimental design 
 

1. Creation of a resimulated gene expression dataset that is modeled closely after the 
real microarray gene expression data 
 
The ability to produce realistic simulated data is a critical component of evaluating 
discovery algorithms in a systematic manner. In machine learning, a standard practice is 
to use expert-derived networks (a prototypical example being the ALARM network [1]). 
Such networks do not correspond to biological systems, they are too small, and the 
distributions are highly discrete. In bioinformatics, researchers have simulated data from 
ad-hoc unvalidated generating models, or from validated but very small models (e.g., 
http://bioinformatics.upmc.edu/GE2/, http://www.phil.cmu.edu/projects/tetrad/, [2]). In 
order to obtain large, realistic networks and data capturing the characteristics of human 
gene expression data, we applied a High-Fidelity Data Resimulation technique [3] that 
generates synthetic data from a causal process that is induced from the real data and 
guarantees that the synthetic data is non-distinguishable from the real data.  
  

The High-Fidelity Data Resimulation method was applied to 1,000 randomly selected 
variables (999 oligonucleotide probes and one phenotype variable) from the 12,600 
probes in the Affymetrix U95A array lung cancer gene expression data of [4]. Once a 
network (REGED0) was obtained by HITON-Bach algorithm, a set of 30,000 samples 
was generated from this network. The area under the ROC curve (AUC) for 
discriminating the real from the synthetic data (i.e., joint real and synthetic distributions 
of the 1,000 variables) indicated minor discrepancies between the two distributions. 
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2. Creation of additional re-simulated gene expression datasets with manipulations 
 
The datasets with manipulations are generated from the original network (REGED0) by 
disconnecting some variables from their direct causes (see Figure 1). After the 
manipulations were performed in the network graph, the network was re-parameterized 
accordingly and data (30,000 samples) was generated from it as described in the previous 
section. We produced two datasets with manipulations: 
 

• REGED1: We manipulated 1 direct cause of the target, 5 its mostly predictive 
direct effects, and 94 randomly selected variables that are scattered throughout the 
network but do not belong to the local neighborhood of target. In total, 100 
variables were manipulated. 

• REGED2: We manipulated 1 direct cause of the target, all (13) its direct effects, 
and 86 randomly selected variables that are scattered throughout the network but 
do not belong to the local neighborhood of target. In total, 100 variables were 
manipulated. 

 
For REGED1, the Challenge provides a list of variables that were manipulated but does 
not disclose what these variables are (e.g., direct causes, direct consequences, or neither). 
Since participants have access only to unmanipulated training data (e.g., REGED0), the 
optimal prediction for the target in REGED1 can be achieved by using a Markov blanket 
of the target inferred in REGED0 and excluding all manipulated direct effects and their 
direct causes. 
 

T

A B

C

T

A B

C

T

A B

C

Manipulation

Original (unmanipulated)
network

Manipulations affect 
variables C and A

Manipulated 
distribution

D D DManipulation

 
Figure 1. Example of manipulations. T is a target (response) variable. In the original network, both A (direct 
cause of T) and C (direct effect of T) are predictive of T. However, once C and A are manipulated, only A
remains predictive of T in the manipulated network. 
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For REGED2, the Challenge mentions that many variables including all direct effects of 
the target were manipulated but does not provide indices of these variables in the dataset 
(unlike REGED1). Since participants have access only to unmanipulated training data, 
the optimal solution for REGED2 is to use only direct causes of the target variable. 
 
3. Structure details: 

• Local neighborhood of T contains 2 direct causes and 13 direct effects; there are 
also 6 spouses of T. 

• Out of 999 non-target variables in the network, 789 are connected to T by an 
undirected path and 210 are not. 

• Local structure in the natural distribtution (all numbers below refer to column 
indices in the 2D-array data.) 

o Direct causes: {322, 931} 
o Direct effects: {84, 252, 345, 410, 426, 454, 572, 594, 595, 740, 818, 826, 

940} 
o Local neighborhood: {84, 252, 322, 345, 410, 426, 454, 572, 594, 595, 

740, 818, 826, 931, 940} 
Note: the variable numbers are offset by 1 compared to the column number c in the data 
tables. The target is numbered 1. All other variables are numbered c+1. 
 

 
 

Figure 2: Local neighborhood of T in REGED network. 
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5) Number of examples and class distribution 

REGED0 Positive ex. Negative ex. Total Check sum 
Training set 59 441 500 167114863.00
Test set 1853 18147 20000 6678340769.00
All 1912 18588 20500 6845455632.00

 
REGED1 Positive ex. Negative ex. Total Check sum 
Training set 59 441 500 167114863.00
Test set 1833 18167 20000 6657027579.00
All 1892 18608 20500 6824142442.00

 
REGED2 Positive ex. Negative ex. Total Check sum 
Training set 59 441 500 167114863.00
Test set 1781 18219 20000 6658529997.00
All 1840 18660 20500 6825644860.00
Note: the training set is the same for all three datasets. 
 

6) Type of input variables and variable statistics 
Artificial variables Random probes Total 
999 0 999 
All variables are integer quantized on 1000 levels. There are no missing values.  
 

7) Results of baseline methods 
 
Several quality assurance tests were performed with datasets in the Challenge. The 
following two goals were pursued in these tests: 

1. Ensure sufficient strength of predictive signal. 
2. Assess effectiveness and impact of manipulations on predictivity of the target in 

manipulated datasets. 
We analyzed classification performance of different feature subsets. Namely, we 
analyzed difference in predictivity in manipulated data when using Markov blanket from 
manipulated network and Markov blanket from unmanipulated network. Also, we 
compared to using no variable selection combined with a powerful regularized classifier 
(e.g., SVMs). In addition, we executed several state-of-the-art causal discovery 
algorithms to obtain baseline results for the Challenge datasets: 

a. HITON-PC (semi-interleaved, without symmetry correction)  
b. HITON-PC (semi-interleaved, without symmetry correction) with FDR 

prefiltering of variables  
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The reference submission uploaded to the website of the challenge. (reference_hpc)  is 
for HITON-PC (max-k=3, alpha=0.05) & Linear SVMs (C=0.001) using original data for 
both algorithms. The test AUCs are: 
REGED0 0.9998 
REGED1 0.9800 
REGED2 0.8447 
The best AUC predictions of challenge participants are: 
REGED0 1.000 
REGED1 0.989 
REGED2 0.839 
The best score of participants on the LOCANET task is: 0.22. 
For reference, we also trained a linear SVM classifier using various feature subsets 
derived from the truth values of the causal relationships: 

Feature subsets 

  1 2 3 4 5 

REGED0 1 Parents (N=2) Children (N=13) Parents + Children (N=15) Markov Blanket (N=21) All (N=999) 

REGED1 2 Parents (N=2) Children (N=13) Parents + Children (N=15) Markov Blanket (N=21) All (N=999) 

REGED2 3 Parents (N=2) Children (N=13) Parents + Children (N=15) Markov Blanket (N=21) All (N=999) 

REGED1 4 Parents (N=2) unmanipulated 
Children (N=8) 

Parents + unmanipulated 
Children (N=10) 

Markov Blanket - 
manipulated Children 

and their Parents 
(N=14) 

All (N=999) 

REGED2 5 Parents (N=2) unmanipulated 
Children (N=0) 

Parents + unmanipulated 
Children (N=2) 

Markov Blanket - 
manipulated Children 

and their Parents 
(N=2) 

All (N=999)

(a) 
AUC results (subsets of features of the previous table) 

  1 2 3 4 5 

REGED0 1 
0.9411 0.9994 0.9998 0.9998 0.9946

REGED1 2 
0.9265 0.9154 0.9817 0.9841 0.9344

REGED2 3 
0.9343 0.4952 0.8426 0.8177 0.7254

REGED1 4 
0.9265 0.9788 0.9941 0.9956 0.9344

REGED2 5 
0.9343 0.5 0.9343 0.9343 0.7254

(b) 
Table A1: Results obtained with subsets of features derived from the true causal 
relationships. (a) Subsets chosen. (b) AUC obtained with a linear SVM. 
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Dataset B: SIDO 
 

1) Topic 

SIDO stands for SImple Drug Operation mechanisms. The SIDO dataset contains 
descriptors of molecules, which have been tested against the AIDS HIV virus. The target 
values indicate the molecular activity (+1 active, -1 inactive). The causal discovery task 
is to uncover causes of molecular activity among the molecule descriptors. This would 
help chemists in the design of new compounds, retaining activity, but having perhaps 
other desirable properties (less toxic, easier to administer). The molecular descriptors 
were generated programmatically from the three dimensional description of the molecule, 
with several programs used by pharmaceutical companies for QSAR studies (Quantitative 
Structure-Activity Relationship). For example, a descriptor may be the number of carbon 
molecules, the presence of an aliphatic cycle, the length of the longest saturated chain, 
etc. The dataset includes 4932 variables (other than the target), which are either molecule 
descriptors (all potential causes of the target) or "probes" (artificially generated variables, 
which are not causes of the target). The training set and the unmanipulated test set are 
similarly distributed. They are constructed such that some of the "probes" are effects 
(consequences) of the target and/or of other real variables, and some are unrelated to the 
target or other real variables. Hence, both in the training set and the unmanipulated test 
set, all the probes are non-causes of the target, yet some of them may be predictive of the 
target. In the manipulated test set, all the "probes" are "manipulated" in every sample by 
an "external agent" (i.e. set to given values, not affected by the dynamics of the system) 
and can therefore not be relied upon to predict the target. The identity of the probes was 
concealed during the challenge. The probes were used to assess the effectiveness of the 
algorithms to dismiss non-causes of the target for making predictions in manipulated test 
data. 

2) Sources 
a. Original owners 

The data was made available by the National Cancer Institute (NCI), via the DTP AIDS 
Antiviral Screen program at: http://dtp.nci.nih.gov/docs/aids/aids_data.html. The DTP 
AIDS Antiviral Screen has checked tens of thousands of compounds for evidence of anti-
HIV activity. Available are screening results and chemical structural data on compounds 
that are not covered by a confidentiality agreement. 

b. Donor of database 
This version of the database was prepared for the WCCI2008 by the Causality 
Workbench team. 

c. Date prepared: Fall 2007. 
d. Date released for the challenge: December 2007. 

 
3) Past usage 

Another version of this dataset was used under the name HIVA for past challenges (the 
WCCI06 challenge on performance predictions, the NIPS08 model selection game and 
the IJCNN 07 “agnostic learning vs. prior knowledge” challenge. See 
http://clopinet.com/challenges/ for details).  SIDO uses the same original data, but 
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differently formatted and split. SIDO was used for the two first challenges organized by 
the Causality Workbench Team: (1) the Causation and Prediction Challenge (WCCI 
2008),  (2)  the NIPS 2008 Pot-Luck challenge, as part of the LOCANET task (see 
http://clopinet.com/causality). 
 

4) Experimental design 
We describe first the raw data and the preprocessing we made (similar for HIVA and 
SIDO). We then describe the process used to add artificial variables (probes). 
 
1. Preprocessing 
The screening results of the May 2004 release containing the screening results for 43,850 
compounds were used. The results of the screening tests are evaluated and placed in one 
of three categories:  

• CA - Confirmed active  
• CM - Confirmed moderately active  
• CI - Confirmed inactive  

We converted this into a two-class classification problem: Inactive (CI) vs. Active (CA or 
CM.) 
Chemical structural data for 42,390 compounds was obtained from the web page. It was 
converted to structural features by three different methods, yielding three feature sets that 
were concatenated. We matched the compounds in the structural description files and 
those in the compound activity file, using the NSC id number. We ended up with 42678 
examples. 
 
First feature set (the same as the one used for HIVA): 
The program ChemTK version 4.1.1, Sage Informatics LLC was used to generate 
features. (Appemdix C). 
Reference: 
Miller, D.W. A Chemical Class-Based Approach to Predictive Model Generation. J. Chem. 
Inf. Comput. Sci. 2003, 43, 568-578 
http://www.ncbi.nlm.nih.gov/pubmed/12653523 
 
The 1617 features of the original HIVA dataset were included in SIDO; they are all 
binary: 

- unbranched_fragments: 750 features 
- pharmacophores: 495 features 
- branched_fragments: 219 features 
- internal_fingerprints: 132 features 
- ring_systems: 21 features 

Only binary features having a total number of ones larger than 100 (>400 for unbranched 
fragments) and at least 2% of ones in the positive class were retained. In all cases, the 
default program settings were used to generate keys (except for the pharmacophores for 
which “max number of pharmacophore points” was set to 4 instead of 3; the 
pharmacophore keys for Hacc, Hdon, ExtRing, ExtArom, ExtAliph were generated, as 
well as those for Hacc, Hdon, Neg, Pos.) The keys were then converted to attributes. 
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We briefly describe the attributes/features: 
Branched fragments: each fragment is constructed through an “assembly” of shortest-path 
unbranched fragments, where each of the latter is required to be bounded by two atoms 
belonging to one or more pre-defined “terminal-atom”. 
Unbranched fragments: unique non-branching fragments contained in the set of 
input molecules. 
Ring systems: A ring system is defined as any number of single or fused rings connected 
by an unbroken chain of atoms. The simplest example would be either a single ring (e.g., 
benzene) or a single fused system (e.g., naphthalene). 
Pharmacophores:  ChemTK uses a type of pharmacophore that measures distance via 
bond connectivity rather than a typical three-dimensional distance. For instance, to 
describe a hydrogen-bond acceptor and hydrogen-bond donor separated by five 
connecting bonds, the corresponding key string would be “HAcc.HDon.5”. The 
pharmacophores were generated from the following features: 
Neg. Explicit negative charge. 
Pos. Explicit positive charge. 
HAcc. Hydrogen-bond acceptor. 
HDon. Hydrogen-bond donor. 
ExtRing. Ring atom having a neighbor atom external to the ring. 
ExtArom. Aromatic ring atom having a neighbor atom external to the ring. 
ExtAliph. Aliphatic ring atom having a neighbor atom external to the ring. 
Internal fingerprints: small, fixed catalog of pre-defined queries roughly similar to the 
MACCS key set developed by MDL.  
 
Second feature set (new in SIDO) 
Hans Bitter (Roche Palo Alto) kindly provided us with features computed with the 
Chemical Computing Group software (Appendix D). We retained 13 binary features: 

FFType_ang 
opr_leadlike 
Q_VSA_FPOS
FFType_oop 
lip_druglike 
FFType_bond
FFType_atom
C2 
reactive 
C1 
FFType_all 
Q_VSA_FHYD
FFType_tor 
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He also provided us with features computed with the program ISIS We retained 11 binary 
ISIS features: 

MACCS(145)
MACCS(--6)
MACCS(125)
MACCS(120)
MACCS(--5)
MACCS(--4)
MACCS(162)
MACCS(-49)
MACCS(-10)
MACCS(136)
MACCS(166)

MACCS stands for Molecuar ACCess System. The MACCS keys are a set of 
questions about a chemical structure. Here are some of the questions:  

• Are there fewer than 3 oxygens?  
• Is there a S-S bond?  
• Is there a ring of size 4?  
• Is at least one F, Cl, Br, or I present?  

Third feature set (new in SIDO) 
Georg Wichard (Institute of Molecular Pharmacology, Germany)  kindly 
provided us with several feature sets.  
Those include: 

• "Ghose-Crippen" Descriptors [Prediction of Hydrophobic (Lipophilic) 
Properties of Small Organic Molecules Using Fragmental Methods: An 
Analysis of ALOGP and CLOGP Methods Arup K. Ghose,* Vellarkad N. 
Viswanadhan, and John J. Wendoloski, J. Phys. Chem. A 1998, 102, 3762-
3772. We retained only one binary feature ALogP_Count[98] (I attached to 
C3

sp3). 
• FMP features (we retained 2 binary features: ES_Count_ssNH2 and 

ES_Count_ssPH) 
 
2. Adding artificial variables (probes) 
The motivation for adding artificial variables is that the truth values of the causal 
relationships between the real variables are not known. Compared to purely artificially 
generated data, using real variables allows us to work on realistic data distributions. The 
added artificial variables allow us to assess the performances of causal discovery 
algorithms. 
 
The target variable is a real variable. Consequently, no artificial variable may be a cause 
of the target (direct or indirect). The artificial variables are constructed as functions (plus 
noise) of subsets of real variables (which may include the target) and other artificial 
variables. Some artificial variables are generated randomly (hence have no dependency 
with the real variables). 
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The method used for generating random probes is described in Appendix A. The specific 
parameters used for SIDO are found below: 
 
    n=size(X,2); % Number of true variables 
    nc=round(n/2); % Number of confounder probes 
    ne=round(n); % Number of effect probes 
    np=nc; % Number of truly random probes 
    tpnc = 3; % Number of parent true variables for confounders 
    ppnc = 2; % Number of parent, which are noise, for confounders 
    tpne = 2; % Number of parent confounder variables for effects 
    ppne = 2; % Number of parent, which are noise, for effects 
    nlval=2; % non-linearity level 2 
    noise=0.05; % random noise level (fraction of output range) 
    top_num=50; % number of top ranking causes kept 
    noise_Y=0.1; 
    num_manip=0; 
    [X, parents]=add_probes(X, Y, np, nc, ne, tpnc, ppnc, tpne, ppne, 
nlval, noise, num_manip, top_num, noise_Y); 

 
Note: the probes are first created unmanipulated for SIDO0 and then manipulated 
according to the methods described in Appendix A. 
 
We summarize the statistics of the probes added: 
 
== Total number of variables: 4932 == 
## Real variables (1644): 
## Probes: 
== Random (822):  
  205 spouses of true var:  
  205 spouses of target:  
  412 independent of target: Warning, some probes assigned to be 
spouses are unused 
== Confounders (822): Warning, wierd set 
  3.49+- 0.98 true variable parents,  2.50+- 0.50 parents unrelated to 
target 
== Effects (1644): Warning, wierd set 
  2.51+- 0.50 confounder parents,  2.50+ 0.50 parents unrelated to 
target 
 

5) Number of examples and class distribution 
 

SIDO0 Positive ex. Negative ex. Total Check sum 
Training set 452 12226 12678 6155080
Test set 351 9649 10000 4863127
All 803 21875 22678 11018207
 
SIDO1 Positive ex. Negative ex. Total Check sum 
Training set 452 12226 12678 6155080
Test set 335 9665 10000 4879177
All 787 21891 22678 11034257
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SIDO2 Positive ex. Negative ex. Total Check sum 
Training set 452 12226 12678 6155080
Test set 365 9635 10000 4865938
All 817 21861 22678 11021018
 
Note: the training set is the same for all three datasets. 
 

6) Type of input variables and variable statistics 
 

Real variables Random probes Total 
1644 3288 4932 
 
All variables are binary. There are no missing values.  
 

7) Results of baseline methods 
Prior to releasing the data, we performed experiments with various causal discovery 
algorithms to assess the dataset and adjust the probe generation to a proper level of 
difficulty. We show below the experiments with the last version of the probe generation 
algorithm, which we ended up using. The final dataset that was released contains fewer 
variables because we removed at the last minute a few non-binary variables, which were 
accidentally left out and slightly reduced the number of probe. The systematic test were 
not re-run. However, several baseline results were uploaded to the web site of the 
challenge. 
 
Select features from natural distribution with probes   
Estimate classification performance in manipulated distribution with probes 
      

Variable subset Classification 
AUC 

# of 
selected 
variables 

# of 
selected 

real 
features 

# of 
selected 
probes 

# of selected probes 
that are children of 

the target 

PC1 0.5771  259 75 184 119 
PC1, real features only 0.6994  75 75 0 0 
PC1, probes only 0.4553  184 0 184 119 
PC2 0.6144  367 116 251 157 
PC2, real features only 0.6296  116 116 0 0 
PC2, probes only 0.4458  251 0 251 157 
PC3 0.5989  25 12 13 8 
PC3, real features only 0.4264  12 12 0 0 
PC3, probes only 0.4166  13 0 13 8 
PC4 0.5998  41 16 25 19 
PC4, real features only 0.4621  16 16 0 0 
PC4, probes only 0.4208  25 0 25 19 
PC5 0.5421  10 4 6 3 
PC5, real features only 0.5000  4 4 0 0 
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PC5, probes only 0.4135  6 0 6 3 
PC6 0.6068  25 10 15 15 
PC6, real features only 0.4074  10 10 0 0 
PC6, probes only 0.4453  15 0 15 15 
PC-FDR1 0.5867  230 69 161 96 
PC-FDR1, real features only 0.6709  69 69 0 0 
PC-FDR1, probes only 0.4480  161 0 161 96 
PC-FDR2 0.5995  338 108 230 141 
PC-FDR2, real features only 0.6107  108 108 0 0 
PC-FDR2, probes only 0.4552  230 0 230 141 
PC-FDR3 0.6038  28 12 16 11 
PC-FDR3, real features only 0.5570  12 12 0 0 
PC-FDR3, probes only 0.4238  16 0 16 11 
PC-FDR4 0.6027  47 19 28 22 
PC-FDR4, real features only 0.6448  19 19 0 0 
PC-FDR4, probes only 0.4258  28 0 28 22 
PC-FDR5 0.6240  12 9 3 2 
PC-FDR5, real features only 0.5742  9 9 0 0 
PC-FDR5, probes only 0.5000  3 0 3 2 
PC-FDR6 0.6079  20 12 8 6 
PC-FDR6, real features only 0.5407  12 12 0 0 
PC-FDR6, probes only 0.4284  8 0 8 6 
 
PC1: HITON-PC with alpha = 0.01, max-k =1 
PC2: HITON-PC with alpha = 0.05, max-k =1  
PC3: HITON-PC with alpha = 0.01, max-k =2 
PC4: HITON-PC with alpha = 0.05, max-k =2 
PC5: HITON-PC with alpha = 0.01, max-k =3 
PC6: HITON-PC with alpha = 0.05, max-k =3 
Same numbering scheme applies to PC-FDR methods. Benjamnin FDR prefiltering was 
applied prior to running HITON-PC.  
We used G2 test for all versions of HITON-PC. 
 
The reference submission uploaded to the website of the challenge. (reference_hpc)  is 
for HITON-PC (max-k=1, alpha=0.01) & Linear SVM (C=1), using original (binary) data 
for both algorithms. HITON-PC uses first 5000 samples in the training data: 
SIDO0  0.9377 
SIDO1  0.6825 
SIDO2  0.6174 
 
The best AUC results of the challenge participants are: 
SIDO0 0.944 
SIDO1 0.753 
SIDO2 0.668 
 
The best score on the LOCANET task is: 3.31
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Dataset C: CINA 
 

1) Topic 
CINA  (Census Is Not Adult) is derived from census data (the UCI machine-learning 
repository Adult database). The data consists of census records for a number of 
individuals. The causal discovery task is to uncover the socio-economic factors affecting 
high income (the target value indicates whether the income exceeds 50K). The 14 
original attributes (features) including age, workclass,  education, education, marital 
status, occupation, native country, etc. have been coded to eliminate categorical variables. 
Distractor features (artificially generated variables, which are not causes of the target) 
were added. In training data, some of these distractors are effects (consequences) of the 
target and/or of other real variables. Some are unrelated to the target or other real 
variables. Hence, some of the distractors may be correlated to the target in training data, 
although they do not cause it. The unmanipulated test data are distributed like the training 
data. Hence both causes and consequences of the target my be predictive in the 
unmanipulated test data. In contrast, in the manipulated test data, all the distractors are 
"manipulated" by an "external agent" (i.e. set to given value, not affected by the 
dynamics of the system) and are therefore they cannot be relied upon to predict the target. 
 

2) Sources 
a. Original owners 

This data was extracted from the census bureau database found at 
http://www.census.gov/ftp/pub/DES/www/welcome.html 
Donor: Ronny Kohavi and Barry Becker, 
       Data Mining and Visualization 
       Silicon Graphics. 
      e-mail: ronnyk@sgi.com for questions. 
 
The information below is exerpted from the UCI machine learning repository: 
 
  Extraction was done by Barry Becker from the 1994 Census database. The prediction task 
is to determine whether a person makes over 50K a year. The attributes are: 
age: continuous. 
workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, 
Without-pay, Never-worked. 
fnlwgt: continuous. 
education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 
9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool. 
education-num: continuous. 
marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-
spouse-absent, Married-AF-spouse. 
occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-
specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, 
Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces. 
relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried. 
race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black. 
sex: Female, Male. 
capital-gain: continuous. 
capital-loss: continuous. 
hours-per-week: continuous. 
native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-
US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, 
Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, 
Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, 
Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands. 
income: >50K, <=50K. 
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Split into train-test using MLC++ GenCVFiles (2/3, 1/3 random). 
 48842 instances, mix of continuous and discrete    (train=32561, test=16281) 
 45222 if instances with unknown values are removed (train=30162, test=15060) 
 Duplicate or conflicting instances : 6 
 Class probabilities for adult.all file 
 Probability for the label '>50K'  : 23.93% / 24.78% (without unknowns) 
 Probability for the label '<=50K' : 76.07% / 75.22% (without unknowns) 
 
 Description of fnlwgt (final weight) 
 The weights on the CPS files are controlled to independent estimates of the 
 civilian noninstitutional population of the US.  These are prepared monthly 
 for us by Population Division here at the Census Bureau.  We use 3 sets of 
 controls. People with similar demographic characteristics should have 
 similar weights.   

  
a. Donor of database 

A first version of the database was prepared for the WCCI 2006 performance prediction 
challenge by Isabelle Guyon, 955 Creston Road, Berkeley, CA 94708, USA 
(isabelle@clopinet.com) under the name ADA. CINA resembles ADA, except that only 
binary variables were retained and the data were reshuffled. 
The present version of CINA was prepared for the causation and prediction challenge by 
the Causality Workbench Team. 

b. Date released for the challenge: January 2008. 
 

3) Past usage 
 
 First cited in: 
 @inproceedings{kohavi-nbtree, 
    author={Ron Kohavi}, 
    title={Scaling Up the Accuracy of Naive-Bayes Classifiers: a 
           Decision-Tree Hybrid}, 
    booktitle={Proceedings of the Second International Conference on 
               Knowledge Discovery and Data Mining}, 
    year = 1996} 
 Error Accuracy reported as follows, after removal of unknowns from 
    train/test sets): 
    C4.5       : 84.46+-0.30 
    Naive-Bayes: 83.88+-0.30 
    NBTree     : 85.90+-0.28 
 The following algorithms were later run with the following error rates, 
    all after removal of unknowns and using the original train/test split. 
    All these numbers are straight runs using MLC++ with default values. 
 
    Algorithm               Error 
 -- ----------------        ----- 
 1  C4.5                    15.54 
 2  C4.5-auto               14.46 
 3  C4.5 rules              14.94 
 4  Voted ID3 (0.6)         15.64 
 5  Voted ID3 (0.8)         16.47 
 6  T2                      16.84 
 7  1R                      19.54 
 8  NBTree                  14.10 
 9  CN2                     16.00 
 10 HOODG                   14.82 
 11 FSS Naive Bayes         14.05 
 12 IDTM (Decision table)   14.46 
 13 Naive-Bayes             16.12 
 14 Nearest-neighbor (1)    21.42 
 15 Nearest-neighbor (3)    20.35 
 16 OC1                     15.04 
 17 Pebls                   Crashed.  Unknown why (bounds WERE increased) 
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Note: The performances reported are error rates, not BER. We tried to reproduce these 
performances and obtained 15.62% error with a linear ridge regression classifier. The 
performances slightly degraded when we tried to group features (15.67% when we 
replace the country code by a binary US/nonUS value and 16.40% with further reduction 
to 33 features.) 
Used under the name ADA for the WCCI 2006 Performance Prediction Challenge, the 
NIPS 2006 Model Selection game and the IJCNN 2007 Agnostic Learning vs. Prior 
Knowledge challenge. See http://clopinet.com/challenges. 
Used for the two first challenges organized by the Causality Workbench Team: (1) the 
Causation and Prediction Challenge (WCCI 2008),  (2)  the NIPS 2008 Pot-Luck 
challenge, as part of the LOCANET task (see http://clopinet.com/causality). 
 

4) Experimental design 
The following steps were performed to create the original ADA dataset: 

- Convert the features to 14 numeric values a∈ 1…n. 
- Convert the numeric values to binary codes (a vector of n zeros with value one at 

the ath position. This results in 88 features. The missing values get an all zero 
vector. 

- Downsize the number of features to 48 by replacing the country code by a binary 
US/nonUS feature. 

- Randomize the feature and pattern order. 
- Remove the entries with missing values for workclass. 

 
Table C.1. Features of the ADA datasets. 
Feature name min maxnumval comments 
Age 0.19 1continuousNo missing value. 

workclass_Private 0 1 2
workclass_Self_emp_not_inc 0 1 2
workclass_Self_emp_inc 0 1 2
workclass_Federal_gov 0 1 2
workclass_Local_gov 0 1 2
workclass_State_gov 0 1 2
workclass_Without_pay 0 1 2
workclass_Never_worked 0 1 2

2799 missing values 
(corresponding entries 
removed.) 

Fnlwgt 0.008 1continuousNo missing value. 

EducationNum 0.06 1 16
Number corresponding to 16 
discrete levels of education 

maritalStatus_Married_civ_spouse 0 1 2
maritalStatus_Divorced 0 1 2
maritalStatus_Never_married 0 1 2
maritalStatus_Separated 0 1 2
maritalStatus_Widowed 0 1 2
maritalStatus_Married_spouse_absent 0 1 2
maritalStatus_Married_AF_spouse 0 1 2

No missing value. 

occupation_Tech_support 0 1 2
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occupation_Craft_repair 0 1 2
occupation_Other_service 0 1 2
occupation_Sales 0 1 2
occupation_Exec_managerial 0 1 2
occupation_Prof_specialty 0 1 2
occupation_Handlers_cleaners 0 1 2
occupation_Machine_op_inspct 0 1 2
occupation_Adm_clerical 0 1 2
occupation_Farming_fishing 0 1 2
occupation_Transport_moving 0 1 2
occupation_Priv_house_serv 0 1 2
occupation_Protective_serv 0 1 2
occupation_Armed_Forces 0 1 2

2809 missing values 
(corresponding entries 
removed.) 

relationship_Wife 0 1 2
relationship_Own_child 0 1 2
relationship_Husband 0 1 2
relationship_Not_in_family 0 1 2
relationship_Other_relative 0 1 2
relationship_Unmarried 0 1 2

No missing value. 

race_White 0 1 2
race_Asian_Pac_Islander 0 1 2
race_Amer_Indian_Eskimo 0 1 2
race_Other 0 1 2
race_Black 0 1 2

No missing value. 

Sex 0 1 2
0=female, 1=male. No 
missing value. 

CapitalGain 0 1continuousNo missing value. 
CapitalLoss 0 1continuousNo missing value. 
HoursPerWeek 0.01 1continuousNo missing value. 

NativeCountry 0 1 2
0=US, 1=non-US. 857 
missing values replaced by 1.

 
Four features were removed because they were found constant in training data. 
We generated the probes according to the method described in Appendix A. Specifically, 
we used for CINA the following parameters: 
 
    n=size(X,2); % Number of true variables 
    nc=round(n/2); % Number of confounder probes 
    ne=round(n); % Number of effect probes 
    np=nc; % Number of truly random probes 
    tpnc = 3; % Number of parent true variables for confounders 
    ppnc = 2; % Number of parent, which are noise, for confounders 
    tpne = 2; % Number of parent confounder variables for effects 
    ppne = 2; % Number of parent, which are noise, for effects 
    nlval=2; % non-linearity level 2 
    noise=0.05; % random noise level (fraction of output range) 
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    top_num=round(n/2); % number of top ranking causes kept 
    noise_Y=0.1; 
    X=full(X);  
    num_manip=0; 
    [X, parents]=add_probes(X, Y, np, nc, ne, tpnc, ppnc, tpne, ppne, 
nlval, noise, num_manip, top_num, noise_Y); 

 
Note: the probes are first created unmanipulated for CINA0 and then manipulated 
according to the methods described in Appendix A. 
 
The statistics on the generated probes are found below: 
== Total number of variables: 132 == 
## Real variables (44): 1 ... 44 
## Probes: 
== Random (22):  
  5 spouses of true var:  
  5 spouses of target:  
  12 independent of target: 121 ... 132 
== Confounders (22): 50 ... 71 
  3.14+- 0.83 true variable parents,  2.32+- 0.48 parents unrelated to 
target 
== Effects (44): 77 ... 120 
  2.48+- 0.51 confounder parents,  2.55+ 0.50 parents unrelated to 
target 

 
5) Number of examples and class distribution 
 

CINA0 Positive ex. Negative ex. Total Check sum 
Training set 3939 12094 16033 142172387.00
Test set 2425 7575 10000 88827113.00
All 6364 19669 26033 230999500.00

 
CINA1 Positive ex. Negative ex. Total Check sum 
Training set 3939 12094 16033 142172387.00
Test set 2540 7460 10000 88535493.00
All 6479 19554 26033 230707880.00
 
CINA2 Positive ex. Negative ex. Total Check sum 
Training set 3939 12094 16033 142172387.00
Test set 2518 7482 10000 88617057.00
All 6457 19576 26033 230789444.00
Note: the training set is the same for all three datasets. 
 

6) Type of input variables and variable statistics 
 

Real variables Random probes Total 
44 88 132 
 
The variables are mixed (continous and binary). There are no missing values.  
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7) Results of baseline methods on CINA 

Cheating ranking of features 
First, we created a ranking of features, using the knowledge of the causa relationships. 
All real variables are tentatively assumed to be parents of the target. The features 
belonging belonging to the MB of the post-manipulation distribution are ranked first 
(then sorted by Pearson correlation coefficient), all other features are ranked last (also 
sorted by Pearson correlation coefficient). We trained classifiers on increasing numbers 
of features using this ranking. The classifier used is a linear ridge regression classifier. 
DAUC and DBER are AUC and BER (balanced error rate) on training date. TAUC and 
TBER are performance on test data. 
 
CINA0     
Num. Var. DAUC    DERR    TAUC    TERR 
1    0.8891    0.0023    0.8889    0.0029
2    0.9045    0.0028    0.9054    0.0035
4    0.9260    0.0027    0.9260    0.0034
8    0.9300    0.0027    0.9314    0.0034
16    0.9478    0.0027    0.9497    0.0034
32    0.9623    0.0028    0.9632    0.0036
64    0.9661    0.0027    0.9663    0.0034
128    0.9674    0.0027    0.9670    0.0035
132    0.9674    0.0027    0.9670    0.0035
     
CINA1     
Num. Var. DAUC    DERR    TAUC    TERR 
1    0.7556    0.0030    0.7600    0.0037
2    0.7574    0.0030    0.7603    0.0037
4    0.7730    0.0033    0.7726    0.0041
8    0.8691    0.0035    0.8684    0.0044
16    0.8845    0.0034    0.8838    0.0043
32    0.8907    0.0034    0.8900    0.004
64    0.9675    0.0027    0.7937    0.0052
128    0.9674    0.0027    0.7883    0.005
132    0.9674    0.0027    0.7873    0.0049
     
CINA2     
Num. Var. DAUC    DERR    TAUC    TERR 
1    0.7556    0.0030    0.7605    0.0038
2    0.7574    0.0030    0.7605    0.0038
4    0.8558    0.0039    0.8573    0.0049
8    0.8691    0.0035    0.8723    0.0045
16    0.8834    0.0033    0.8848    0.0043
32    0.8909    0.0033    0.8910    0.0042
64    0.9675    0.0027    0.5492    0.0041
128    0.9674    0.0027    0.5483    0.0044
132    0.9674    0.0027    0.5481    0.0043
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We then performed experiments with various causal discovery algorithms to select 
features. A linear SVM with C = 1 is used in these experiments. 
 
Select features from natural distribution w/o probes     

Estimate classification performance in natural distribution w/o probes (CINA0)   

       

Experiment 
id Variable subset Classification 

AUC 

# of 
selected 
variables 

# of 
selected 

real 
features 

# of 
selected 
probes 

# of selected 
probes that 
are children 
of the target

1 PC (HITON-PC) 0.8982 23 23 0 0 

2 PC (HITON-PC-FDR) 0.8982 23 23 0 0 

3 Parents (MMHC) 0.8502 6 6 0 0 

4 Children (MMHC) 0.7514 8 8 0 0 

5 All 0.8999 44 44 0 0 

       

Select features from natural distribution with probes     

Estimate classification performance in natural distribution with probes (CINA0)   

       

Experiment 
id Variable subset Classification 

AUC 

# of 
selected 
variables 

# of 
selected 

real 
features 

# of 
selected 
probes 

# of selected 
probes that 
are children 
of the target

6 PC (HITON-PC) 0.9721 37 20 17 16 

7 PC (HITON-PC), real features only 0.8967 20 20 0 0 

8 PC (HITON-PC), probes only 0.9201 17 0 17 16 

9 PC (HITON-PC-FDR) 0.9721 37 20 17 16 

10 PC (HITON-PC-FDR), real features only 0.8967 20 20 0 0 

11 PC (HITON-PC-FDR), probes only 0.9201 17 0 17 16 

12 Parents (MMHC) 0.8479 4 4 0 0 

13 Parents (MMHC), real features only 0.8479 4 4 0 0 

14 Parents (MMHC), probes only 0.5000 0 0 0 0 

15 Children (MMHC) 0.9480 15 9 6 5 

16 Children (MMHC), real features only 0.7743 9 9 0 0 

17 Children (MMHC), probes only 0.8967 6 0 6 5 

18 All 0.9728 132 44 88 44 

19 All, real features only 0.8988 44 44 0 0 

20 All, probes only 0.9447 88 0 88 44 

 
 
      



 26

Select features from natural distribution with probes     

Estimate classification performance in manipulated distribution with probes (CINA1)  

       

Experiment 
id Variable subset Classification 

AUC 

# of 
selected 
variables 

# of 
selected 

real 
features 

# of 
selected 
probes 

# of selected 
probes that 
are children 
of the target

21 PC (HITON-PC) 0.8496 37 20 17 16 

22 PC (HITON-PC), real features only 0.8982 20 20 0 0 

23 PC (HITON-PC), probes only 0.5114 17 0 17 16 

24 PC (HITON-PC-FDR) 0.8496 37 20 17 16 

25 PC (HITON-PC-FDR), real features only 0.8982 20 20 0 0 

26 PC (HITON-PC-FDR), probes only 0.5114 17 0 17 16 

27 Parents (MMHC) 0.8508 4 4 0 0 

28 Parents (MMHC), real features only 0.8508 4 4 0 0 

29 Parents (MMHC), probes only 0.5000 0 0 0 0 

30 Children (MMHC) 0.6558 15 9 6 5 

31 Children (MMHC), real features only 0.7693 9 9 0 0 

32 Children (MMHC), probes only 0.5114 6 0 6 5 

33 All 0.8482 132 44 88 44 

34 All, real features only 0.8999 44 44 0 0 

35 All, probes only 0.4987 88 0 88 44 

       

Select features from natural distribution with probes     

Estimate classification performance in manipulated distributionI with probes (CINA2)  

       

Experiment 
id Variable subset Classification 

AUC 

# of 
selected 
variables 

# of 
selected 

real 
features 

# of 
selected 
probes 

# of selected 
probes that 
are children 
of the target

21 PC (HITON-PC) 0.6643 37 20 17 16 

22 PC (HITON-PC), real features only 0.8985 20 20 0 0 

23 PC (HITON-PC), probes only 0.3445 17 0 17 16 

24 PC (HITON-PC-FDR) 0.6643 37 20 17 16 

25 PC (HITON-PC-FDR), real features only 0.8985 20 20 0 0 

26 PC (HITON-PC-FDR), probes only 0.3445 17 0 17 16 

27 Parents (MMHC) 0.8559 4 4 0 0 

28 Parents (MMHC), real features only 0.8559 4 4 0 0 
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29 Parents (MMHC), probes only 0.5000 0 0 0 0 

30 Children (MMHC) 0.4603 15 9 6 5 

31 Children (MMHC), real features only 0.7631 9 9 0 0 

32 Children (MMHC), probes only 0.3146 6 0 6 5 

33 All 0.6584 132 44 88 44 

34 All, real features only 0.9005 44 44 0 0 

35 All, probes only 0.3257 88 0 88 44 

 
The reference submission uploaded to the website of the challenge. (reference_hpc)  is 
for HITON-PC (max-k=2, alpha=0.01) & Linear SVM (C=1) using original data for 
SVM and discrete data for HITON-PC. The test AUC results are: 
CINA0 0.9721 
CINA1 0.8496 
CINA2 0.6643 
 
 
The AUC best results of the challenge participants on CINA are: 
CINA0 0.976 
CINA1 0.869 
CINA2 0.816 
The best score of the LOCANET task is 1.70. 
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Dataset D: MARTI 
 

1) Topic 
MARTI stands for Measurement ARTIfact. MARTI was obtained from the same data 
generative process as REGED, a source of simulated genomic data, but a noise model 
was added to simulate the imperfections of the measurement device.  

2) Sources 
a. Original owners 

This is a modified version of REGED (Alexander Statnikov and Constantin F. Aliferis, 
2007) created by Isabelle Guyon. 

a. Donor of database 
This version of the database was prepared for the WCCI2008 by the Causality 
Workbench team. 

b. Date prepared: Fall 2007. 
c. Date released for the challenge: January 2008. 
 

3) Past usage 
Used for the two first challenges organized by the Causality Workbench Team: (1) the 
Causation and Prediction Challenge (WCCI 2008),  (2)  the NIPS 2008 Pot-Luck 
challenge, as part of the LOCANET task (see http://clopinet.com/causality). 
 

4) Experimental design 
The goal of MARTI, like REGED, is to find genes, which could be responsible of lung 
cancer. The target variable is binary; it separates malignant samples (adenocarcinoma) 
from control  samples (squamous). The feature values representing measurements of gene 
expression levels are assumed to have been recorded from a two-dimensional microarray 
32x32. The training set was perturbed by a zero-mean correlated noise model 
(neighboring values in one array are generally similarly affected, but the noise pattern is 
different in every training example).  
The test sets have no added noise. This situation simulates a case where we would be 
using different instruments at "training time" and "test time", e.g. we would use DNA 
microarrays to collect training data and PCR for testing. We avoided adding noise to the 
test set because it would be too difficult to filter it without visualizing the test data or 
computing statistics on the test data, which we forbid. So the scenario is that the second 
instrument (used at test time) is more accurate. In practice, the measurements would also 
probably be more expensive, so part of the goals of training would be to reduce the size 
of the feature set (we are not making this a requirement in this first challenge).  
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Figure 7: Example of MARTI simulated micro-array 

Technical details:  
- The features/variables are randomly arranged in a 2d array 32x32. Variables 1:32 form 
the first column, 33:64 the second, etc.   
- To obtain 1024 features, the 999 features of REGED are complemented by 25 "calibrant 
features", which have value zero plus a small amount of Gaussian noise. The calibrants 
are spread regularly accross the array and have variable indices 34 44 54 64 199 209 219 
354 364 374 384 519 529 539 674 684 694 704 839 849 859 994 1004 1014 1024. 
- Like for REGED, we proposed 3 tasks MARTI0, MARTI1, and MARTI2, all having 
the same training set of 500 examples (from the "unmanipulated distribution"), and 
different test sets of 20000 examples.  
- Like for REGED, the three tasks differ in the test data distribution, which results from 
various types of manipulations: 
MARTI0: No manipulation (distribution identical to the training data). 
MARTI1: The following variables are manipulated:  
5, 19, 27, 35, 37, 42, 49, 67, 70, 71, 102, 137, 144, 145, 153, 158, 185, 188, 194, 221, 
225, 229, 232, 235, 244, 268, 273, 284, 294, 295, 305, 310, 331, 356, 368, 379, 385, 396, 
398, 404, 411, 412, 413, 417, 425, 430, 455, 479, 481, 482, 491, 492, 509, 510, 550, 553, 
555, 603, 609, 627, 642, 646, 654, 679, 682, 706, 736, 744, 755, 761, 763, 771, 807, 809, 
812, 821, 853, 869, 870, 872, 888, 894, 895, 906, 914, 918, 926, 931, 932, 941, 963, 973, 
978, 979, 986, 988, 990, 1001, 1010, 1017. 
MARTI2: Many variables are manipulated, including all the consequences of the target. 
 
Filtering the noise and/or taking into account the geomety of the array should be 
necessary to obtain good results. 
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In MARTI, what does it mean that "the noise pattern is different in every training 
example"? 
Using our noise model, we drew a noise pattern for every example and added it to that 
example. When the features are arranged in a 2d 32x32 array (as explained in the 
documentation), the noise pattern has a smooth structure (neighboring coefficients have 
similar values). This is kind of background with low frequency. A different noise 
template is added to each example, but all noise templates are all drawn from the same 
noise model. If you visualize the training examples after rearranging them as a 32x32 
array, you will see this right away. For each feature, the expected value of the noise is 
zero. But the noise of two neighboring features is correlated. We show below examples 
of noise patterns (positive values in red and negative values in green). 

 

In MARTI, what does it mean that 25 "calibrant features" have value zero plus a 
small amount of Gaussian noise? The averages for every calibrant feature is far 
from zero. 
We have 2 kinds of noise. The calibrants are 0+-[small Gaussian noise]. Then, on top of 
that, in training data only, we add the correlated noise model. After we add the correlated 
noise, because of the small sample size and the large variance, the calibrant values are no 
longer close to zero (even on average) in training data. However, the median is close zero 
on average for almost all calibrants, relatively to the signal amplitude: 
abs(mean(median(X(:,calib))/std(abs(X(:)))))~e-005.  
In training data, we get: mean(abs(mean(X)))~e+004 but and 
mean((mean(X(:,calib))))~5e+003. In test data, because we did not add noise, the 
calibrant values are close to zero, relatively speaking: mean(abs(mean(X)))~5e+003 but 
mean(abs(mean(X(:,calib))))~1. The calibrants can be used to preprocess the training data 
by subtracting a bias value after the low frequency noise is removed, so that the calibrant 
values are zero after preprocessing the training data. 

REGED and MARTI do not look like regular microarray data. What kind of 
normalization did you do? 
REGED was obtained by fitting a model to real microrray data. REGED features were 
shifted and rescaled individually then rounded to integer spanning the range 0:999. 
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MARTI was obtained from data generated by the same model as REGED without 
rescaling features individually. For MARTI, a particular type of correlated noise was 
added. The data were then scaled and quantized globally so the features span -
999999:999999.  
We chose to make the noise model simple but of high amplitude to make it easy to filter 
out the noise but hard to ignore it. If you think of the spots on a microarray as an image 
(MARTI patterns are 32x32 "images"), the noise in MARTI corresponds to patches of 
more or less intense values, added on top of the original image, representing some kind of 
slowly varying background. Nowadays, microarray technology has progressed to a point 
that such heavy backgrounds are not common and occasional contaminated arrays would 
not pass quality control; furthermore microarray reading software calibrate and normalize 
data so you would not see data that "bad". But for new instruments under development, 
such levels of noise are not uncommon.  
MARTI illustrates the fact that if you do not take out correlated noise, the result of causal 
discovery may be severely impaired. Even though the amplitude of the noise is large, the 
noise is easy to filter out, using the fact that neighboring spots are affected similarly, and 
using the spots having constant values before noise is added (calibrants). After noise 
filtering, the residual noise may still impair causal discovery, so it its your challenge to 
see what can be done to avoid drawing wrong conclusions in the presence of correlated 
noise. 

5) Number of examples and class distribution 
 

MARTI0 Positive ex. Negative ex. Total Check sum 
Training set 59 441 500 4824538021.00
Test set 1852 18148 20000 72836533619.00
All 1911 18589 20500 77661071640.00

 
MARTI1 Positive ex. Negative ex. Total Check sum 
Training set 59 441 500 4824538021.00
Test set 1765 18235 20000 72845954638.00
All 1824 18676 20500 77670492659.00
 
MARTI2 Positive ex. Negative ex. Total Check sum 
Training set 59 441 500 4824538021.00
Test set 1662 18338 20000 72914605414.00
All 1721 18779 20500 77739143435.00
Note: the training set is the same for all three datasets. 
 

6) Type of input variables and variable statistics 
 

Artificial variables Random probes Total 
1024 0 1024 
All variables are integer quantized on 1000 levels. There are no missing values.  
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7) Results of baseline methods 
Below are results for MARTI datasets. All feature sets mentioned in the table below are 
the true ones (i.e., obtained from the data generating network). 
The first and three last columns are obtained by training on the raw training set as 
provided. We also include for comparison the results on REGED and tests of the 
unmanipulated data (version 0) when traning with other versions of the training data:  

- MARTI00: training data without noise added (should give results similar to 
REGED). 

- MARTI01: like the MARTI0 training set, but after a crude filtering was 
performed. 

 

Linear SVM with C = 0.001      
 REGED0 MARTI00 MARTI01 MARTI0 MARTI1 MARTI2 
Parents 0.941 0.936 0.842 0.883 0.854 0.853 
Children 0.999 0.999 0.990 0.481 0.436 0.500 
PC 1.000 1.000 0.994 0.749 0.872 0.853 
MB 1.000 1.000 0.994 0.894 0.460 0.853 
All 0.995 0.995 0.982 0.886 0.779 0.731 
All \ MB 0.882 0.875 0.799 0.766 0.727 0.707 
Calibrators N/A 0.496 0.499 0.512 0.505 0.512 
All \ Calibrators N/A 0.995 0.982 0.887 0.773 0.724 

MB in natural distr. See results for MB above 0.793 0.746 
       

Linear SVM with C = 1      
 REGED0 MARTI00 MARTI01 MARTI0 MARTI1 MARTI2 
Parents 0.952 0.947 0.861 0.883 0.855 0.853 
Children 0.999 0.999 0.994 0.943 0.702 0.500 
PC 1.000 1.000 0.995 0.941 0.866 0.853 
MB 1.000 1.000 0.996 0.951 0.756 0.853 
All 0.996 0.997 0.985 0.948 0.808 0.730 
All \ MB 0.864 0.846 0.782 0.767 0.727 0.692 
Calibrators N/A 0.489 0.499 0.505 0.485 0.497 
All \ Calibrators N/A 0.997 0.985 0.948 0.808 0.730 

MB in natural distr. See results for MB above 0.865 0.614 
       

Polynomial SVM optimized by cross-validation    
 REGED0 MARTI00 MARTI01 MARTI0 MARTI1 MARTI2 
Parents 0.948 0.943 0.867 0.883 0.617 0.853 
Children 0.999 0.999 0.990 0.842 0.712 0.500 
PC 1.000 1.000 0.997 0.981 0.845 0.853 
MB 1.000 1.000 0.995 0.975 0.744 0.853 
All 0.995 0.997 0.983 0.974 0.843 0.727 
All \ MB 0.882 0.875 0.782 0.762 0.728 0.677 
Calibrators N/A 0.493 0.492 0.517 0.505 0.496 
All \ Calibrators N/A 0.997 0.985 0.974 0.843 0.728 

MB in natural distr. See results for MB above 0.865 0.614 
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We give in Appendix E the Matlab code to obtain MARTI01 from MARTI0 training 
data. Other preprocessing have been provided by the participants: 
 http://clopinet.com/isabelle/Projects/WCCI2008/Analysis.html#MARTIprepro 
 
The reference submission uploaded to the website of the challenge. (reference_hpc)  is 
for HITON-PC (max-k=1, alpha=0.01) & Linear SVM (C=0.001), using original for both 
algorithms. The test AUC results are: 
MARTI0 0.9830 
MARTI1 0.8595 
MARTI2 0.7652 
 
The best AUC performance of challenge particiants are: 
MARTI0 1.000 
MARTI1 0.947 
MARTI2 0.798 
 
The best score on the LOCANET task obtained by participants is: 0.21 
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Appendix A: Generation of random probes 
 
We describe a method aimed as assessing the fraction of non-causes in a subset of causes 
of a target variable selected by a causal discovery algorithm. The method consists in 
generating variables whose distribution resembles the real variables, but are either 
unrelated to the target, or related to it in a non causal way (consequences or confounders). 
Those variables, called “probes” by analogy to the probe method in feature selection, are 
intermixed with the real variables and a causal discovery algorithm is run. The fraction of 
probes in the variables selected as causes of the target may be used to determine the false 
positive rate and false discovery rate. 
 
Notations 
We call X the data matrix with p lines (patterns) and n columns (features/variables). We 
call R the matrix of random probes of dimension (p, r), which are unrelated to the target. 
We call C the matrix of confounders and consequences of dimension (p, c). 
 
Generating variables unrelated to the target (R matrix) 
Variables unrelated to the target are generated by taking blocks of variables in the 
original data matrix and permuting the order of the rows randomly. The resulting 
variables should be uncorrelated to the target, except for coincidental correlations due to 
the small number of samples. If the blocks are of size one, the variables generated are 
uncorrelated with one another. Otherwise, there are block correlations between them. We 
show the Matlab code in Appendix A1. 
 

Generating consequences and confounders (C and E matrices) 
To generate confounders, subsets of real variables (X matrix) and of the probes unrelated 
to the target (R matrix) are used as an input to a non-linear function. The same method is 
applied to generate consequences of the target by adding the target in the set of inputs. 
The code generating such probes in shown in Appendix A3. 
 
As a non-linear function, we use a 2 layer neural network. The inputs are expected to lie 
approximately between –1 and 1 (or between 0 and 1). For all neurons, we use weights 
drawn randomly from N(0,1)/fanin. The hidden units use the tanh(ax) as squashing 
function. The slope a determines the amount of non-linearity added by the hidden layer 
because the second layer is connected both to the hidden units and directly to the inputs. 
Random noise drawn from N(0,ε) is added to the output (ε is proportional to the output 
range). Finally, the distribution of the output values is mapped to the distribution of one 
of the real variables (this adds additional non-linearity). We show the Matlab code of the 
non-linear function in Appendix A2. In Figure A1, we show an example of function 
obtained for a univariate input between 0 and 1.  
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Figure A1: Example of artificial non-linear function. The example was obtained using the 
code of Appendix A2, with x=[0:.01:1]; y=rand_func(x', sin(x'), 0.05, 1, 2, 1); 
 
Manipulations 
 
Only probes are manipulated in test data in such a way that they become all independent 
of the target. This is achieved by permuting the values of each probe in test data. 
 
Example architecture 
 
In Figure A2, we show the architecture of the fake variable (probe) network. In Appendix 
A4, we reproduce the code of this probe network architecture: 

o We do not know the causal relationships of the true variables to the target.  
o We first draw probe_num random probes independent from the target (R).  
o We reserve ½ of R, which we do not use as input to the probe network and 

thus remain fully independent of the target.  
o We use ¼ of R as spouses of causes of the target to create 

confounder_num confounders (C).   
o We use ¼ of R as spouses of the target to create consequence_num 

consequences (E).  
o Random subsets of the confounders are also used to influence the 

consequences.  
o The average fanin (number of variables influencing a probe) is monitored 

by the parameter “sparsity”, which we chose to be 0.01 time the number of 
real variables. We use a parameter slope_squash=2 to monitor the 
amount of non-linearity. 
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Figure A2: Architecture of the probe network. In yellow we indicate the dependencies 
of the real variables (some of which may be causes or consequences of the target). In 
green, we indicate the random probes drawn first, which are independent of the target. In 
orange, we indicate how the confounders are generated having as patents subsets of the 
green and yellow variables. In cyan, we indicate consequences are created using as parent 
the target and subsets of green and orange variables. This architecture exhibits the 
following conditional independencies: T⊥ R,  Y⊥ R, Y⊥ C|T, E⊥ T|(Y,C). 
 
Testing 
 
To test our simulator, we compute several correlation coefficients R for subsets of 
variables in unmanipulated and manupulated data. We call Ti, Ri, Ci, and Ei a column of 
the T, R, C, and E matrices, respectively, and Y the target vector. 
We compute statistics for the absolute value, including: 

- R (Ti, Rj) – expected to be close to 0 
- R (Ti, Rj | C(Ti, Rj)), C(Ti, Rj) effect of Ti and Rj – expected to be non-zero 
- R (Y, Rj) – expected to be close to 0 
- R (Y, Rj | E(Y, Rj)), E(Y, Rj) effect of Yand Rj – expected to be non-zero 
- R (Y, Cj) – expected to be non-zero 
- R (Y, Cj | T) – expected to be close to 0, except in manipulated data 
- R (Ti, Cj) – expected to be non-zero for some pairs, except in manipulated data 
- R (Y, Ej) – expected to be non-zero, except in manipulated data 
- R (Ti, Ej | Y, C) – expected to be close to 0 

 
 

NoiseTrue variables (T) 

Fake variables 
independent of target 
(R) 

Target
(Y) 

Fake variables: 
confounders (C) 

Fake variables effects of 
the target (E) 

 
Noise 
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To compute the conditional correlation coefficient of Ai and Bj given C, where C is a 
matrix of column vectors, we proceed as follows:  

- standardize Ai, Bj and the columns of C 
- project Ai, and Bj on the null space of C 
- compute the correlation of the projections 

It can be shown that if C is a single column then  
R (Ai, Bj | C)= [ R (Ai, Bj) − R (Ai, C) R (Bj, C)] / sqrt[ (1- R (Ai, C))2 (1- R (Bj, C))2] 
 
The verification code is reported in Appendix A5. 
 
Here is a simple Matlab example that runs the code: 
 
p=1000; % Number of samples 
x=randn(1000,1); 
y=sign(x); 
x=x(:,ones(10,1))+randn(1000,10)/5; % replicate the same variable and 
add noise 
fnum=size(x, 2); 
fprintf('Created dataset with %d features, with average correl to 
target=%5.4f+-%5.4f\n', fnum, mean(condcor(x,y)), std(condcor(x,y))); 
rp=20; % Completely random, not related to target 
ca=10; % Confounders 
ef=10; % Effects of target 
nl=2;  % Level of non-linearity 
mn=p/2;% Number of manipulated variables 
% Add probes to the data matrix 
[xx, parents]=add_probes(x, y, rp,ca,ef,[],[],[],[],nl,[],mn); 
  
fprintf('\nAdded %d random probes:\n', (rp+ca+ef)); 
fprintf('%d not related to the target,\n', rp); 
fprintf('%d confounders\n', ca); 
fprintf('%d effects\n', ef); 
fprintf('\n++++++++++++++++++++++++++++++++++\n'); 
fprintf('+++ Testing unmanipulated data +++\n'); 
fprintf('++++++++++++++++++++++++++++++++++\n\n'); 
test_net(xx(1:500,:), y(1:500), parents, fnum); 
fprintf('\n++++++++++++++++++++++++++++++++\n'); 
fprintf('+++ Testing manipulated data +++\n'); 
fprintf('++++++++++++++++++++++++++++++++\n'); 
show_net_again=0; 
test_net(xx(501:1000,:), y(501:1000), parents, fnum, show_net_again); 
 
 
Created dataset with 10 features, with average correl to 
target=0.7829+-0.0037 
*** Creating 20 random probes by blocks of 1 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  
*** Creating 10 confounders,  
    with on average 1 parents drawn randomly from the 10 true variables  
    and 1 random probe parents from a pool of 5 probes 
Distillating 
Keeping only 10/10 true variables most correlated to Y 
Normalizing 
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Adding variables, 
 average number of true parents=1 
 average number of probe parents=1 
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%  
*** Creating 10 effects of the target,  
    with on average 1 parents drawn randomly from the 10 confounders  
    and 1 random probe parents from a pool of 5 probes 
Normalizing 
Adding variables, 
 average number of true parents=1 
 average number of probe parents=1 
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%  
Added 40 random probes: 
20 not related to the target, 
10 confounders 
10 effects 
 
++++++++++++++++++++++++++++++++++ 
+++ Testing unmanipulated data +++ 
++++++++++++++++++++++++++++++++++ 
 
== Total number of variables: 50 == 
== Real variables (10): 1 ... 10 
== Probes (20):  
  4 spouses of true var:  
(11 -> 16  18  20 ) 
(13 -> 17  19  22  23  24 ) 
(14 -> 16  21  24  25 ) 
(15 -> 17  19  22 ) 
  5 spouses of target:  
(26 -> 35  38  40 ) 
(27 -> 34  37 ) 
(28 -> 31  33  39 ) 
(29 -> 36 ) 
(30 -> 31  32  36  37  38  39 ) 
  11 independent of target: Warning, some probes assigned to be spouses 
are unused 
== Confounders (10): 16 ... 25 
(16 <- 10  6  14  11 ) 
(17 <- 4  13  15 ) 
(18 <- 10  4  11 ) 
(19 <- 10  13  15 ) 
(20 <- 10  11 ) 
(21 <- 5  4  14 ) 
(22 <- 1  15  13 ) 
(23 <- 2  13 ) 
(24 <- 8  13  14 ) 
(25 <- 7  2  14 ) 
== Effects (10): 31 ... 40 
(31 <- 0  18  21  28  30 ) 
(32 <- 0  21  30 ) 
(33 <- 0  20  19  28 ) 
(34 <- 0  25  27 ) 
(35 <- 0  18  26 ) 
(36 <- 0  22  21  29  30 ) 
(37 <- 0  20  27  30 ) 
(38 <- 0  25  30  26 ) 
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(39 <- 0  21  24  30  28 ) 
(40 <- 0  20  22  26 ) 
 
** Those should NOT be close to zero (ever) ** 
**> R (Y, Tj) -- Target dependent on true variables 
    -- Top 1%:     <abs(R)>=0.7966+-0.0000 
    -- Top 10%:     <abs(R)>=0.7966+-0.0000 
    -- All:      <abs(R)>=0.7857+-0.0069 
 
** Those should be close to zero ** 
==> R (Ti, Rj) -- Probes independent of the true variables 
    -- Top 1%:     <abs(R)>=0.1129+-0.0003 
    -- Top 10%:     <abs(R)>=0.0851+-0.0190 
    -- All:      <abs(R)>=0.0310+-0.0242 
==> R (Y, Rj) -- Probes independent of the target 
    -- Top 1%:     <abs(R)>=0.1028+-0.0000 
    -- Top 10%:     <abs(R)>=0.1006+-0.0030 
    -- All:      <abs(R)>=0.0311+-0.0267 
==> R (Y, Cj | T) -- Confounders independent of target given the true 
variables (max of 50 confounders sampled) 
    -- Top 1%:     <abs(R)>=0.0932+-0.0000 
    -- Top 10%:     <abs(R)>=0.0932+-0.0000 
    -- All:      <abs(R)>=0.0370+-0.0301 
==> R (Ti, Ej | Y, C) -- True variables (top most corr w. Y) 
independent of effects given the parents of the effects (max of 50 
effects sampled) 
    -- Top 1%:     <abs(R)>=0.1185+-0.0000 
    -- Top 10%:     <abs(R)>=0.0862+-0.0143 
    -- All:      <abs(R)>=0.0325+-0.0269 
    -- For comparison, unconditioned dependency of same true var (top 
most corr w. Y) and effects (same effects sampled) 
    -- Top 1%:     <abs(R)>=0.7752+-0.0000 
    -- Top 10%:     <abs(R)>=0.7461+-0.0118 
    -- All:      <abs(R)>=0.5212+-0.2056 
    -- For comparison, unconditioned dependency of same true var (top 
most corr w. Y) and effects (all effects) 
    -- Top 1%:     <abs(R)>=0.7752+-0.0000 
    -- Top 10%:     <abs(R)>=0.7461+-0.0118 
    -- All:      <abs(R)>=0.5212+-0.2056 
    -- For comparison, unconditioned dependency of same true var (top 
most corr w. Y) and the target (all effects) 
    -- Top 1%:     <abs(R)>=0.7966+-0.0000 
    -- Top 10%:     <abs(R)>=0.7966+-0.0000 
    -- All:      <abs(R)>=0.7857+-0.0069 
 
** Those should be close to zero ONLY in manipulated test data ** 
==> R (Ti, Cj) -- Confounders dependent on their parents (true 
variables) 
    -- Parents, which are true variables 
    -- Top 1%:     <abs(R)>=0.8926+-0.0000 
    -- Top 10%:     <abs(R)>=0.8926+-0.0000 
    -- All:      <abs(R)>=0.4737+-0.3109 
    -- Parents, which are probes 
    -- Top 1%:     <abs(R)>=0.9526+-0.0000 
    -- Top 10%:     <abs(R)>=0.9436+-0.0128 
    -- All:      <abs(R)>=0.5310+-0.3201 
==> R (Ti, Rj | C(Ti, Rj)), C(Ti, Rj) effect of Ti and Rj 
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    -- Dependency of true var and probes induced by confounders (max of 
50 confounders sampled) 
    -- Top 1%:     <abs(R)>=0.7284+-0.0000 
    -- Top 10%:     <abs(R)>=0.7275+-0.0013 
    -- All:      <abs(R)>=0.3552+-0.2284 
    -- For comparison, unconditioned dependency of same true var and 
probes (same confounders sampled) 
    -- Top 1%:     <abs(R)>=0.0518+-0.0000 
    -- Top 10%:     <abs(R)>=0.0515+-0.0004 
    -- All:      <abs(R)>=0.0339+-0.0102 
    -- For comparison, unconditioned dependency of same true var and 
probes (all samples) 
    -- Top 1%:     <abs(R)>=0.0518+-0.0000 
    -- Top 10%:     <abs(R)>=0.0515+-0.0004 
    -- All:      <abs(R)>=0.0339+-0.0102 
**> R (Y, Cj) -- Target dependent on counfounders 
    -- Top 1%:     <abs(R)>=0.7135+-0.0000 
    -- Top 10%:     <abs(R)>=0.7135+-0.0000 
    -- All:      <abs(R)>=0.3563+-0.2551 
==> R (Ci, Rj | E), E are effects of the target, Ci, and Rj are parents 
of these effects 
    -- Target spouses become dependent given their children (max of 50 
effects sampled) 
    -- Top 1%:     <abs(R)>=0.7728+-0.0000 
    -- Top 10%:     <abs(R)>=0.6309+-0.2006 
    -- All:      <abs(R)>=0.1670+-0.2078 
    -- For comparison, the same without conditioning on the 
effects(same effects) 
    -- Top 1%:     <abs(R)>=0.0878+-0.0000 
    -- Top 10%:     <abs(R)>=0.0819+-0.0083 
    -- All:      <abs(R)>=0.0313+-0.0284 
    -- For comparison, the same without conditioning on the effects(all 
effects) 
    -- Top 1%:     <abs(R)>=0.0878+-0.0000 
    -- Top 10%:     <abs(R)>=0.0819+-0.0083 
    -- All:      <abs(R)>=0.0313+-0.0284 
    -- For comparison, effects and their probe parents (same effects) 
    -- Top 1%:     <abs(R)>=0.8433+-0.0000 
    -- Top 10%:     <abs(R)>=0.7681+-0.1063 
    -- All:      <abs(R)>=0.3204+-0.2218 
    -- For comparison, effects and their confounder parents (same 
effects) 
    -- Top 1%:     <abs(R)>=0.8768+-0.0000 
    -- Top 10%:     <abs(R)>=0.8255+-0.0725 
    -- All:      <abs(R)>=0.3394+-0.2670 
==> R (Y, Rj | E(Y, Rj)), E(Y, Rj) effect of Y and Rj 
    -- Target spouses and target become dependent given their children 
(max of 50 souses sampled) 
    -- Top 1%:     <abs(R)>=0.4694+-0.0000 
    -- Top 10%:     <abs(R)>=0.4694+-0.0000 
    -- All:      <abs(R)>=0.2432+-0.1422 
    -- For comparison, correlation target spouses and target, without 
conditioning (same spouses) 
    -- Top 1%:     <abs(R)>=0.0985+-0.0000 
    -- Top 10%:     <abs(R)>=0.0985+-0.0000 
    -- All:      <abs(R)>=0.0420+-0.0342 
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    -- For comparison, correlation target spouses and target, without 
conditioning (all spouses) 
    -- Top 1%:     <abs(R)>=0.0985+-0.0000 
    -- Top 10%:     <abs(R)>=0.0985+-0.0000 
    -- All:      <abs(R)>=0.0420+-0.0342 
**> R (Y, Ej) -- Effects of the target correlated to the target 
    -- Top 1%:     <abs(R)>=0.8092+-0.0000 
    -- Top 10%:     <abs(R)>=0.8092+-0.0000 
    -- All:      <abs(R)>=0.6203+-0.2725 
==> R (Ei, Cj) and R (Ei, Rj) -- Effects of the target correlated to 
their other parents 
    -- Parents, which are confounders 
    -- Top 1%:     <abs(R)>=0.8768+-0.0000 
    -- Top 10%:     <abs(R)>=0.8255+-0.0725 
    -- All:      <abs(R)>=0.3394+-0.2670 
    -- Parents, which are probes 
    -- Top 1%:     <abs(R)>=0.8433+-0.0000 
    -- Top 10%:     <abs(R)>=0.7681+-0.1063 
    -- All:      <abs(R)>=0.3204+-0.2218 
 
++++++++++++++++++++++++++++++++ 
+++ Testing manipulated data +++ 
++++++++++++++++++++++++++++++++ 
== Total number of variables: 50 == 
== Real variables (10): 1 ... 10 
== Probes (20):  
  4 spouses of true var:  
  5 spouses of target:  
  11 independent of target: Warning, some probes assigned to be spouses 
are unused 
== Confounders (10): 16 ... 25 
  1.40+- 0.52 true variable parents,  1.50+- 0.53 parents unrelated to 
target 
== Effects (10): 31 ... 40 
  1.50+- 0.53 confounder parents,  1.50+ 0.53 parents unrelated to 
target 
 
** Those should NOT be close to zero (ever) ** 
**> R (Y, Tj) -- Target dependent on true variables 
    -- Top 1%:     <abs(R)>=0.7924+-0.0000 
    -- Top 10%:     <abs(R)>=0.7924+-0.0000 
    -- All:      <abs(R)>=0.7865+-0.0050 
 
** Those should be close to zero ** 
==> R (Ti, Rj) -- Probes independent of the true variables 
    -- Top 1%:     <abs(R)>=0.1304+-0.0015 
    -- Top 10%:     <abs(R)>=0.0895+-0.0323 
    -- All:      <abs(R)>=0.0274+-0.0265 
==> R (Y, Rj) -- Probes independent of the target 
    -- Top 1%:     <abs(R)>=0.0727+-0.0000 
    -- Top 10%:     <abs(R)>=0.0715+-0.0018 
    -- All:      <abs(R)>=0.0353+-0.0230 
==> R (Y, Cj | T) -- Confounders independent of target given the true 
variables (max of 50 confounders sampled) 
    -- Top 1%:     <abs(R)>=0.0899+-0.0000 
    -- Top 10%:     <abs(R)>=0.0899+-0.0000 
    -- All:      <abs(R)>=0.0330+-0.0306 
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==> R (Ti, Ej | Y, C) -- True variables (top most corr w. Y) 
independent of effects given the parents of the effects (max of 50 
effects sampled) 
    -- Top 1%:     <abs(R)>=0.1231+-0.0000 
    -- Top 10%:     <abs(R)>=0.0990+-0.0103 
    -- All:      <abs(R)>=0.0520+-0.0269 
    -- For comparison, unconditioned dependency of same true var (top 
most corr w. Y) and effects (same effects sampled) 
    -- Top 1%:     <abs(R)>=0.1098+-0.0000 
    -- Top 10%:     <abs(R)>=0.0971+-0.0053 
    -- All:      <abs(R)>=0.0405+-0.0306 
    -- For comparison, unconditioned dependency of same true var (top 
most corr w. Y) and effects (all effects) 
    -- Top 1%:     <abs(R)>=0.1098+-0.0000 
    -- Top 10%:     <abs(R)>=0.0971+-0.0053 
    -- All:      <abs(R)>=0.0405+-0.0306 
    -- For comparison, unconditioned dependency of same true var (top 
most corr w. Y) and the target (all effects) 
    -- Top 1%:     <abs(R)>=0.7924+-0.0000 
    -- Top 10%:     <abs(R)>=0.7924+-0.0000 
    -- All:      <abs(R)>=0.7865+-0.0050 
 
** Those should be close to zero ONLY in manipulated test data ** 
==> R (Ti, Cj) -- Confounders dependent on their parents (true 
variables) 
    -- Parents, which are true variables 
    -- Top 1%:     <abs(R)>=0.0864+-0.0000 
    -- Top 10%:     <abs(R)>=0.0864+-0.0000 
    -- All:      <abs(R)>=0.0311+-0.0202 
    -- Parents, which are probes 
    -- Top 1%:     <abs(R)>=0.1102+-0.0000 
    -- Top 10%:     <abs(R)>=0.0796+-0.0433 
    -- All:      <abs(R)>=0.0347+-0.0252 
==> R (Ti, Rj | C(Ti, Rj)), C(Ti, Rj) effect of Ti and Rj 
    -- Dependency of true var and probes induced by confounders (max of 
50 confounders sampled) 
    -- Top 1%:     <abs(R)>=0.0425+-0.0000 
    -- Top 10%:     <abs(R)>=0.0425+-0.0001 
    -- All:      <abs(R)>=0.0264+-0.0128 
    -- For comparison, unconditioned dependency of same true var and 
probes (same confounders sampled) 
    -- Top 1%:     <abs(R)>=0.0437+-0.0000 
    -- Top 10%:     <abs(R)>=0.0424+-0.0019 
    -- All:      <abs(R)>=0.0270+-0.0125 
    -- For comparison, unconditioned dependency of same true var and 
probes (all samples) 
    -- Top 1%:     <abs(R)>=0.0437+-0.0000 
    -- Top 10%:     <abs(R)>=0.0424+-0.0019 
    -- All:      <abs(R)>=0.0270+-0.0125 
**> R (Y, Cj) -- Target dependent on counfounders 
    -- Top 1%:     <abs(R)>=0.0803+-0.0000 
    -- Top 10%:     <abs(R)>=0.0803+-0.0000 
    -- All:      <abs(R)>=0.0368+-0.0188 
==> R (Ci, Rj | E), E are effects of the target, Ci, and Rj are parents 
of these effects 
    -- Target spouses become dependent given their children (max of 50 
effects sampled) 
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    -- Top 1%:     <abs(R)>=0.0934+-0.0000 
    -- Top 10%:     <abs(R)>=0.0871+-0.0090 
    -- All:      <abs(R)>=0.0328+-0.0279 
    -- For comparison, the same without conditioning on the 
effects(same effects) 
    -- Top 1%:     <abs(R)>=0.0929+-0.0000 
    -- Top 10%:     <abs(R)>=0.0870+-0.0083 
    -- All:      <abs(R)>=0.0327+-0.0282 
    -- For comparison, the same without conditioning on the effects(all 
effects) 
    -- Top 1%:     <abs(R)>=0.0929+-0.0000 
    -- Top 10%:     <abs(R)>=0.0870+-0.0083 
    -- All:      <abs(R)>=0.0327+-0.0282 
    -- For comparison, effects and their probe parents (same effects) 
    -- Top 1%:     <abs(R)>=0.0674+-0.0000 
    -- Top 10%:     <abs(R)>=0.0647+-0.0038 
    -- All:      <abs(R)>=0.0355+-0.0240 
    -- For comparison, effects and their confounder parents (same 
effects) 
    -- Top 1%:     <abs(R)>=0.0720+-0.0000 
    -- Top 10%:     <abs(R)>=0.0699+-0.0029 
    -- All:      <abs(R)>=0.0331+-0.0248 
==> R (Y, Rj | E(Y, Rj)), E(Y, Rj) effect of Y and Rj 
    -- Target spouses and target become dependent given their children 
(max of 50 souses sampled) 
    -- Top 1%:     <abs(R)>=0.0727+-0.0000 
    -- Top 10%:     <abs(R)>=0.0727+-0.0000 
    -- All:      <abs(R)>=0.0332+-0.0279 
    -- For comparison, correlation target spouses and target, without 
conditioning (same spouses) 
    -- Top 1%:     <abs(R)>=0.0727+-0.0000 
    -- Top 10%:     <abs(R)>=0.0727+-0.0000 
    -- All:      <abs(R)>=0.0348+-0.0291 
    -- For comparison, correlation target spouses and target, without 
conditioning (all spouses) 
    -- Top 1%:     <abs(R)>=0.0727+-0.0000 
    -- Top 10%:     <abs(R)>=0.0727+-0.0000 
    -- All:      <abs(R)>=0.0348+-0.0291 
**> R (Y, Ej) -- Effects of the target correlated to the target 
    -- Top 1%:     <abs(R)>=0.0886+-0.0000 
    -- Top 10%:     <abs(R)>=0.0886+-0.0000 
    -- All:      <abs(R)>=0.0364+-0.0272 
==> R (Ei, Cj) and R (Ei, Rj) -- Effects of the target correlated to 
their other parents 
    -- Parents, which are confounders 
    -- Top 1%:     <abs(R)>=0.0720+-0.0000 
    -- Top 10%:     <abs(R)>=0.0699+-0.0029 
    -- All:      <abs(R)>=0.0331+-0.0248 
    -- Parents, which are probes 
    -- Top 1%:     <abs(R)>=0.0674+-0.0000 
    -- Top 10%:     <abs(R)>=0.0647+-0.0038 
    -- All:      <abs(R)>=0.0355+-0.0240 

 



 44

 
 
 
Appendix A1: Generation of variables unrelated to the target 
 
function Xp=create_random_probes(X, probe_num, block_size) 
%Xp=create_random_probes(X, probe_num, block_size) 
% Create a matrix Xp containing probes. 
% This is done by permuting blocks of the original matrix. 
% X             -- Data matrix p x n 
% probe_num     -- dim(Xp, 2)=N 
% block_size    -- number of features permuted in block. If 
block_size=1, 
%                  the all probes correspond to variables individually 
permuted. 
% Returns: 
% Xp            -- matrix of probes of dim p x N 
  
% Isabelle Guyon -- isabelle@clopinet.com -- October 2007 
  
[p, n]=size(X); 
N=probe_num; 
if issparse(X) 
    Xp=sparse(p, N); 
else 
    Xp=zeros(p, N); 
end 
  
beg0=1; 
fin0=min(block_size, n); 
beg1=beg0; 
fin1=fin0; 
while 1 
    fprintf('%d ', fin1); 
    % define a new block of data from X 
    rng0=beg0:fin0; 
    % define where to put it in Xp 
    rng1=beg1:fin1;     
    % Create a random permutation 
    ip=randperm(p); 
    % Assign values 
    Xp(:,rng1)=X(ip,rng0); 
    % next bounds in X 
    beg0=fin0+1; 
    if beg0>n, % restart at the beginning 
        beg0=1;  
        fin0=min(block_size, n); 
    else 
        fin0=min(fin0+block_size, n); 
    end  
    % next bounds in Xp 
    beg1=fin1+1; 
    if beg1>N, break; end 
    fin1_new=fin1+length(beg0:fin0); 
    if fin1_new>N 
        fin0=fin0-(fin1_new-N); 
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        fin1=N; 
    else 
        fin1=fin1_new; 
    end 
end 
fprintf('\n'); 
  
Appendix A2: Non-linear function used to generate confounders and 
consequences 
 
function y=rand_func(x, r, noise, h, slope_squash, debug) 
%y=rand_func(x, r, noise, h, slope_squash, debug) 
% Take an x vector as an input and generates a random function from it 
% We use a neural network of 2 layers with as many hidden units as 
inputs 
% and a direct connection from input to output. 
% x: input vector (also works for data matrices, patterns in lines) 
% Expects inputs roughly between 0 and 1 or between -1 and 1. 
% r: variable of which we want to mimic the distribution 
% noise: noise level of output_range*N(0, noise) added 
% slope_squash: slope at origin of the squashing function (tanh) 
% h: number of hidden units 
% debug: debug flag 
  
% Isabelle Guyon -- isabelle@clopinet.com -- October 2007 
  
if nargin<2, r=[]; end 
if nargin<3, noise=0.05; end 
if nargin<4, h=[]; end 
if nargin<5, slope_squash=1; end 
if nargin<6, debug=0; end 
  
[p, n]=size(x); 
[pr, nr]=size(r); 
  
% number of hidden units 
if isempty(h), h=n; end 
if debug, h=10; end 
  
% First layer parameters 
w1=randn(h,n)./n; 
b1=randn(h,1)./n; 
b1=b1(:,ones(1,p)); 
% Second layer parameters 
w2=randn(1,n+h)./(n+h); 
b2=randn./(n+h); 
  
% Network computations 
v=x*w1'+b1'; 
y1=tanh(slope_squash*v); 
y1=[y1, x]; 
v=y1*w2'+b2'; 
if debug 
    y=tanh(slope_squash*v); % Try also squashing 
    [sv, vi]=sort(v); 
    h1=figure; subplot(3,1,1); plot(sv, '.'); title('Blue: Raw v'); 
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    [sy, si]=sort(y); 
    h2=figure; subplot(3,1,1); plot(sy, '.'); title('Blue: Raw y'); 
    yorig=y; 
    vorig=v; 
end 
  
% Add random noise 
d=max(v)-min(v); 
v=v+noise*d*randn(size(v));  
if debug 
    y=y+noise*randn(size(y));  
    % Note: the effect of squashing and adding noise to y  
    % at this level makes the noise not hoeoscedastic 
    figure(h1); hold on; subplot(3,1,1); plot(v(si), 'r.'); 
title('Blue: Raw v distribution; Red: plus noise'); 
    figure(h2); hold on; subplot(3,1,1); plot(y(si), 'r.'); 
title('Blue: Raw y distribution; Red: plus noise'); 
    if ~isempty(r) 
        % Mimic the distribution of r for y 
        [ys, is]=sort(y); 
        rs=sort(r); 
        y(is)=rs; 
    end 
end 
  
if ~isempty(r) 
    % Mimic the distribution of r directly for v 
    [vs, is]=sort(v); 
    rs=sort(r); 
    v(is)=rs; 
end 
  
if debug 
    figure(h1); hold on; subplot(3,1,2); plot(v(vi), 'g.'); 
title('Green=NL mapping'); 
    figure(h2); hold on; subplot(3,1,2); plot(y(si), 'g.'); 
title('Green=NL mapping'); 
    figure(h1); hold on; subplot(3,1,3); plot(vorig, v, 'r.'); 
xlabel('v before'); ylabel('v after'); 
    figure(h2); hold on; subplot(3,1,3); plot(yorig, y, 'r.'); 
xlabel('y before'); ylabel('y after'); 
end 
  
% In the end we find better to use the direct non-linear mapping of v 
to r 
y=v; 
  
if debug 
    figure; plot(vorig, y, 'r.'); xlabel('Net output'); ylabel('Output 
mapped to matched desired distribution'); 
    if size(x, 2)==1 
        figure; plot(x, y, 'r.'); xlabel('Input'); ylabel('Output'); 
    end 
end 
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Appendix A3: Generation of variables related to others (may include the target) 
 
function [Xc, parents]=create_confounders(X, Xp, Y, confounder_num, 
true_parent_num, probe_parent_num, non_linearity_level, noise, top_num) 
%[Xc, parents]=create_confounders(X, Xp, Y, confounder_num, 
true_parent_num, probe_parent_num, non_linearity_level, noise, top_num) 
% Create a matrix Xc containing confounders that are consequences of 
real variables and probes. 
% This is done by defining a sparse architecture and then applying 
functions to the inputs to generate new inputs. 
% The output is then made to resemble the distribution of a real 
variable. 
% X             -- Data matrix p x n containing real variables  
% Xp             -- Data matrix p x m containing probes 
% Y             -- Target values (p) (not provided if we want to 
exclude 
%                   the target) 
% confounder_num -- dim(Xc, 2)= N 
%                  the all probes correspond to variables individually 
permuted. 
% true_parent_num, probe_parent_num -- number of parents of the created 
variables 
% non_linearity_level -- Slope of thr tanh in the hidden layer (the 
larger 
%                       the more non-linear. Use 1 for almost linear. 
% noise -- Random noise level (as a fraction of the variable output 
range). 
% top_num      -- number of examples most correlated to Y used in X as 
%                   input to confounders. Y is then not used as input. 
% Returns: 
% Xc            -- Matrix of probes of dim p x N 
% parents       -- A cell array with lists of parents among input 
variables 
%                  The variables are numbers 1..n in X and n+1...n+m in 
Xp 
% If the target is given, we add it to all input variable sets (this 
%                   creates consequences). 
  
% Isabelle Guyon -- isabelle@clopinet.com -- October 2007 
  
if nargin<8, noise=0.05; end 
do_not_add_Y=0; 
if nargin>=9,  
    do_not_add_Y=1; 
else 
    top_num=size(X,2); 
end 
  
[p, n]=size(X); 
[p, m]=size(Xp); 
N=confounder_num; 
  
if ~isempty(Y) & do_not_add_Y 
    % Distillate the data 
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    fprintf('Distillating\n'); 
    idx_feat=balcor_select(X, Y); 
    idx_good=idx_feat(1:top_num); 
    Y=[]; 
    fprintf('Keeping only %d/%d true variables most correlated to Y\n', 
length(idx_good), n); 
else 
    idx_good=[1:n]'; 
end 
ng=length(idx_good); 
  
if issparse(X) 
    Xc=sparse(p, N); 
else 
    Xc=zeros(p, N); 
end 
  
% Divide variables by their maximum, to bring them between 0 and 1 
Xs=[X Xp]; 
xmax=max(Xs); 
fprintf('Normalizing\n'); 
for k=1:size(Xs,2) 
    if xmax(k)~=0 
        Xs(:,k)=Xs(:,k)./xmax(k); 
    end 
end 
  
% Average number of variables to be selected 
parents={}; 
fprintf('Adding variables,\n\taverage number of true parents=%d', 
true_parent_num); 
fprintf('\n\taverage number of probe parents=%d\n', probe_parent_num); 
percent_done=0; 
old_percent_done=0; 
for k=1:N 
    percent_done=floor(k/N*100); 
    if ~mod(percent_done,10) & percent_done~=old_percent_done, 
        fprintf('%d%% ', percent_done); 
    end 
    old_percent_done=percent_done; 
    % Select a random subset of real variables and of probes 
    fanin_real=max(1, min(ceil(true_parent_num*(1+(rand-0.5))), ng)); 
    rp_real=idx_good(randperm(ng)); % We prefer the variables 
correlated to the target 
    fanin_probe=max(1, min(ceil(probe_parent_num*(1+(rand-0.5))), m)); 
    rp_probe=randperm(m)'; 
    parents{k}=[rp_real(1:fanin_real); n+rp_probe(1:fanin_probe)]; 
    % Select a real variable at random 
    rp=randperm(n); 
    r=X(:,rp(1)); % This one should not be standardized 
    % Input the variables to the non-linear function  
    h=fanin_real+fanin_probe; % number of hidden units 
    Xc(:,k)=rand_func([Xs(:,parents{k}), Y] , r, noise, h, 
non_linearity_level); 
    % Add Y as parent 
    if ~isempty(Y) 
        parents{k}=[0; parents{k}]; 
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    end 
end 
function [idx_feat, cor_val]=balcor_select(X, Y, feat_num) 
%[idx_feat, cor_val]=balcor_select(X, Y, feat_num) 
% feature selection with correlation coefficient 
% which balances the 2 classes by subsampling the second one. 
  
% Isabelle Guyon -- isabelle@clopinet.com -- October 2007 
  
pidx=find(Y==1); 
nidx=find(Y==-1); 
% take a random subset of negative class elements of the same size as 
% the number of positive 
rp=randperm(length(nidx)); 
nidx=nidx(rp(1:min(length(pidx), length(nidx))));  
RR=condcor(X([pidx; nidx],:), Y([pidx; nidx])); 
[cor_val, idx_feat]=sort(-abs(RR)); 
  
if nargin>2 
    idx_feat=idx_feat(1:feat_num); 
    cor_val=-cor_val(1:feat_num); 
else 
    cor_val=-cor_val; 
end 
 
 
Appendix A4: Generation of all probes 
 
function [X, parents]=add_probes(X, Y, probe_num, confounder_num, 
consequence_num, conf_true_parent_num, conf_probe_parent_num, 
cons_true_parent_num, cons_probe_parent_num, non_linearity_level, 
noise, num_manipulated, top_num, noise_Y) 
%[X, parents]=add_probes(X, Y, probe_num, confounder_num, 
consequence_num, conf_true_parent_num, conf_probe_parent_num, 
cons_true_parent_num, cons_probe_parent_num, non_linearity_level, 
noise, num_manipulated, top_num, noise_Y) 
% Create a matrix X containing probes, urelated to the target or  
% confounders and consequeces. The architecture is built in. 
% X                 -- Data matrix p x n 
% Y                 -- Target values (p) (not provided if we want to 
exclude 
%                   the target) 
% probe_num         -- Number of probes not consequences of real 
variables or 
%                   the target 
% confounder_num    -- Number of confounders 
% consequence_num   -- Number of consequences 
% conf_true_parent_num, conf_probe_parent_num -- number of parents of 
% confounders 
% cons_true_parent_num, cons_probe_parent_num -- number of parents of 
% consequences 
% non_linearity_level -- Slope of the tanh in the hidden layer (the 
larger 
%                       the more non-linear. Use 1 for almost linear. 
% noise             -- Random noise level (as a fraction of the 
variable output range). 
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% num_manipulated   -- for the num_manipulated last entries the probes 
values 
%                   are randomized, making all probes independent of 
the 
%                   target. 
% top_num           -- number of examples most correlated to Y used in 
X as 
%                   input to confounders 
% tone_Y_down       -- Multipicative factor to tone Y down as a cause 
of its 
%                   effects 
% 
% Returns: 
% Xnew          -- Matrix of probes of dim p x N 
% parents       -- A cell array with lists of parents of all the 
variables 
%                  Variables are numbered 1 to n. The target is 0.  
  
% Isabelle Guyon -- isabelle@clopinet.com -- October 2007 
  
[p, n]=size(X); 
  
if nargin<6 | isempty(conf_true_parent_num), conf_true_parent_num=1; 
end 
if nargin<7 | isempty(conf_probe_parent_num), conf_probe_parent_num=1; 
end 
if nargin<8 | isempty(cons_true_parent_num), cons_true_parent_num=1; 
end 
if nargin<9 | isempty(cons_probe_parent_num), cons_probe_parent_num=1; 
end 
if nargin<10 | isempty(non_linearity_level), non_linearity_level=1; end 
if nargin<11 | isempty(noise), noise=0.05; end 
if nargin<12 | isempty(num_manipulated), num_manipulated=0; end 
if nargin<13 | isempty(top_num), top_num=size(X,2); end 
if nargin<14 | isempty(noise_Y), noise_Y=0; end 
  
% Repartition of the probes marginally independent of the target 
spouse_cause=floor(probe_num/4); 
spouse_target=floor(probe_num/4); 
true_random=probe_num-spouse_cause-spouse_target; 
  
% Creation of probes marginally independent of the target 
block_size=max(1,round(n/10)); 
fprintf('*** Creating %d random probes by blocks of %d\n', probe_num, 
block_size); 
Xp=create_random_probes(X, probe_num, block_size); 
  
% Split probes into spouses and purely random 
% First shuffle them 
rp=randperm(size(Xp, 2)); 
Xp=Xp(:, rp); 
% Then split into 3 parts 
Xp1=Xp(:,1:spouse_cause); 
Xp2=Xp(:,spouse_cause+1:spouse_cause+spouse_target); 
Xp3=Xp(:,spouse_cause+spouse_target+1:probe_num); 
clear Xp; 
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% Create confounders, not consequences of the target, using true 
variables 
% and a subset of the previously drawn probes 
fprintf('*** Creating %d confounders, \n    with on average %d parents 
drawn randomly from the %d true variables \n    and %d random probe 
parents from a pool of %d probes\n', ... 
    confounder_num, conf_true_parent_num, size(X,2), 
conf_probe_parent_num, size(Xp1, 2) ); 
[Xc, p1_parents]=create_confounders(X, Xp1, Y, confounder_num, 
conf_true_parent_num, conf_probe_parent_num, non_linearity_level, 
noise, top_num); 
  
% Create effects of the target and a subset of the previously drawn 
probes 
fprintf('\n*** Creating %d effects of the target, \n    with on average 
%d parents drawn randomly from the %d confounders \n    and %d random 
probe parents from a pool of %d probes\n', ... 
    consequence_num, cons_true_parent_num, size(Xc,2), 
cons_probe_parent_num, size(Xp2, 2)); 
if noise_Y>0, 
    %flip noise_Y*p examples 
    rp=randperm(p); 
    rp=rp(1:round(noise_Y*p)); 
    Y(rp)=-Y(rp); 
end     
[Xe, p2_parents]=create_confounders(Xc, Xp2, Y , consequence_num, 
cons_true_parent_num, cons_probe_parent_num, non_linearity_level, 
noise); 
  
% Add everything together 
X=[X, Xp1, Xc, Xp2, Xe, Xp3]; 
total_var=n+probe_num+confounder_num+consequence_num; 
parents=cell(total_var,1); 
% Confounder parents: X (n variables) and Xp1 (spouse _cause variables) 
% have no parents: start at n+spouse_cause+1 
parents(n+spouse_cause+1:n+spouse_cause+confounder_num)=p1_parents; 
% Effect parents: Xp2 have no parents, start at 
% n+spouse_cause+confounder_num+spouse_target. 
% Offset the indices of p2_parents by n+spouse_cause 
for k=1: length(p2_parents) 
    p2_parents{k}=p2_parents{k}+n+spouse_cause; 
    p2_parents{k}(1)=0; % The target value is not offset 
end 
parents(n+spouse_cause+confounder_num+spouse_target+1:total_var-
true_random)=p2_parents; 
  
if num_manipulated>0 
    probe_idx=(n+1):size(X,2); 
    manip_idx=(p-num_manipulated+1):p; 
    for k=1:length(probe_idx) 
        rp=randperm(num_manipulated); 
        X(manip_idx,probe_idx(k))=X(manip_idx(rp),probe_idx(k)); 
    end 
end 
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Appendix A5: Verification code 
 
function test_net(X, Y, parents, true_num, debug, lean) 
%test_net(X, Y, parents, true_num, , lean) 
% Test the independencies in the net 
% X -- data matrix (p samples x n variables) 
% Y -- target vector (dim p) 
% parents -- cell aray of lists of parents of the variables 
% true_num -- number of true variables (first in the X matrix) 
% debug -- flag to show or not the network 
% lean -- flag to remove the calculation of the pvalues 
  
[p, n]=size(X); 
if nargin<4, true_num=[]; end 
if nargin<5, debug=0; end % display net 
if nargin<6, lean=1; end  
  
% Maximum number of conditional correlation coeff computed (for 
% computational reasons) 
maxval=50; 
  
[parents, children, no_parent_idx, effect_idx, confounder_idx, 
true_var_idx, rp_idx, spouse_target_idx, spouse_true_idx, 
other_rp_idx]= ... 
    draw_net(parents, true_num, debug); 
  
% Reduce the test matrix by selecting a balanced number of examples 
pidx=find(Y==1); 
nidx=find(Y==-1); 
rp=randperm(length(nidx)); 
nidx=nidx(rp(1:min(length(pidx), length(nidx)))); % The positive class 
is usually more depleted 
X=X([pidx;nidx],:); 
Y=Y([pidx;nidx]); 
  
% Find the true variables 
T=X(:,true_var_idx); 
% Find the random probes indep Y 
R=X(:,rp_idx); 
% Find the consequences of the target 
E=X(:,effect_idx); 
% The rest are the counfounders 
C=X(:,confounder_idx); 
  
% Find candidate causes (top maxval variables most correlated to the 
target) 
fprintf('\n** Those should NOT be close to zero (ever) **\n'); 
[RR, PP]=condcor(Y, T, [], lean); 
fprintf('**> R (Y, Tj) -- Target dependent on true variables\n'); 
show_R(RR,PP); 
[SR, IR]=sort(-abs(RR)); 
top_cause_idx=IR(1:min(maxval, length(IR))); 
  
% Compute the other dependencies 
warning off 
% Independence of random probes with other variable 
fprintf('\n** Those should be close to zero **\n'); 
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[RR, PP]=condcor(T, R, [], lean); 
fprintf('==> R (Ti, Rj) -- Probes independent of the true 
variables\n'); 
show_R(RR,PP); 
  
[RR, PP]=condcor(Y, R, [], lean); 
fprintf('==> R (Y, Rj) -- Probes independent of the target\n'); 
show_R(RR,PP); 
  
if ~isempty(C) 
    % Confounders and target shielded by true variables  
    fprintf('==> R (Y, Cj | T) -- Confounders independent of target 
given the true variables (max of %d confounders sampled)\n', maxval);     
    RR=[]; PP=[]; 
    for k=1:min(maxval, length(confounder_idx)) % Too long if we 
calculate for all 
        p_idx=parents{confounder_idx(k)}; 
        p_idx=intersect(p_idx, true_var_idx); 
        [rr,pp]=condcor(Y, C(:,k), X(:,p_idx), lean); 
        RR=[RR rr]; 
        PP=[PP pp]; 
    end 
    show_R(RR,PP); 
  
    % Effects and true variables shielded by parents 
    fprintf('==> R (Ti, Ej | Y, C) -- True variables (top most corr w. 
Y) independent of effects given the parents of the effects (max of %d 
effects sampled)\n', maxval); 
    RR=[]; PP=[]; 
    ms=min(length(effect_idx), maxval); 
    for k=1:ms 
        p_idx=parents{effect_idx(k)}; 
        p_idx=intersect(p_idx, confounder_idx); 
        [rr,pp]=condcor(T(:, top_cause_idx), E(:,k), [Y X(:,p_idx)], 
lean); 
        RR=[RR rr]; 
        PP=[PP pp]; 
    end 
    show_R(RR,PP); 
    fprintf('    -- For comparison, unconditioned dependency of same 
true var (top most corr w. Y) and effects (same effects sampled)\n'); 
    [RR,PP]=condcor(T(:, top_cause_idx), E(:, 1:ms), [], lean); 
    show_R(RR,PP); 
    fprintf('    -- For comparison, unconditioned dependency of same 
true var (top most corr w. Y) and effects (all effects)\n'); 
    [RR, PP]=condcor(T(:, top_cause_idx), E, [], lean); 
    show_R(RR,PP);     
    fprintf('    -- For comparison, unconditioned dependency of same 
true var (top most corr w. Y) and the target (all effects)\n'); 
    [RR, PP]=condcor(T(:, top_cause_idx), Y, [], lean); 
    show_R(RR,PP);     
end 
  
if ~isempty(C) 
    fprintf('\n** Those should be close to zero ONLY in manipulated 
test data **\n'); 
    % Confounders  
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    % C and parents 
    fprintf('==> R (Ti, Cj) -- Confounders dependent on their parents 
(true variables)\n'); 
    fprintf('    -- Parents, which are true variables\n'); 
    RR=[]; PP=[]; 
    for k=1:length(confounder_idx) 
        p_idx=parents{confounder_idx(k)}; 
        p_idx=intersect(p_idx, true_var_idx); 
        [rr,pp]=condcor(X(:,p_idx), C(:,k), [], lean); 
        RR=[RR; rr]; 
        PP=[PP; pp]; 
    end 
    show_R(RR,PP); 
    fprintf('    -- Parents, which are probes\n'); 
    RR=[]; PP=[]; 
    for k=1:length(confounder_idx) 
        p_idx=parents{confounder_idx(k)}; 
        p_idx=intersect(p_idx, rp_idx); 
        [rr,pp]=condcor(X(:,p_idx), C(:,k), [], lean); 
        RR=[RR; rr]; 
        PP=[PP; pp]; 
    end 
    show_R(RR,PP); 
     
    % Induced by C 
    fprintf('==> R (Ti, Rj | C(Ti, Rj)), C(Ti, Rj) effect of Ti and 
Rj\n    -- Dependency of true var and probes induced by confounders 
(max of %d confounders sampled)\n', maxval); 
    RR=[]; PP=[]; 
    for k=1:min(length(confounder_idx), maxval) 
        p_idx=parents{confounder_idx(k)}; 
        tpar_idx=intersect(p_idx, true_var_idx); 
        rpar_idx=intersect(p_idx, rp_idx); 
        [rr, pp]=condcor(X(:,tpar_idx), X(:,rpar_idx), C(:,k), lean); 
        RR=[RR; rr(:)]; 
        PP=[PP; pp(:)]; 
    end            
    show_R(RR,PP); 
     
    fprintf('    -- For comparison, unconditioned dependency of same 
true var and probes (same confounders sampled)\n'); 
    RR=[]; PP=[]; 
    for k=1:min(length(confounder_idx), maxval) 
        p_idx=parents{confounder_idx(k)}; 
        tpar_idx=intersect(p_idx, true_var_idx); 
        rpar_idx=intersect(p_idx, rp_idx); 
        [rr, pp]=condcor(X(:,tpar_idx), X(:,rpar_idx), [], lean); 
        RR=[RR; rr(:)]; 
        PP=[PP; pp(:)]; 
    end            
    show_R(RR,PP); 
     
    fprintf('    -- For comparison, unconditioned dependency of same 
true var and probes (all samples)\n'); 
    RR=[]; PP=[]; 
    for k=1:length(confounder_idx) 
        p_idx=parents{confounder_idx(k)}; 
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        tpar_idx=intersect(p_idx, true_var_idx); 
        rpar_idx=intersect(p_idx, rp_idx); 
        [rr, pp]=condcor(X(:,tpar_idx), X(:,rpar_idx), [], lean); 
        RR=[RR; rr(:)]; 
        PP=[PP; pp(:)]; 
    end            
    show_R(RR,PP); 
     
    % Y and C 
    fprintf('**> R (Y, Cj) -- Target dependent on counfounders\n'); 
    [RR, PP]=condcor(Y, C, [], lean); 
    show_R(RR,PP); 
end 
  
if ~isempty(E) 
    % Parents of the effects 
    fprintf('==> R (Ci, Rj | E), E are effects of the target, Ci, and 
Rj are parents of these effects\n    -- Target spouses become dependent 
given their children (max of %d effects sampled)\n', maxval); 
    RR=[]; PP=[]; 
    for k=1:min(length(effect_idx), maxval) 
        p_idx=parents{effect_idx(k)}; 
        rpar_idx=intersect(p_idx, spouse_target_idx); 
        tpar_idx=intersect(p_idx, confounder_idx); 
        [rr, pp]=condcor(X(:,tpar_idx) , X(:,rpar_idx), E(:,k), lean); 
        RR=[RR; rr(:)]; 
        PP=[PP; pp(:)]; 
    end            
    show_R(RR,PP); 
    fprintf('    -- For comparison, the same without conditioning on 
the effects(same effects)\n'); 
    RR=[]; PP=[]; 
    for k=1:min(length(effect_idx), maxval) 
        p_idx=parents{effect_idx(k)}; 
        rpar_idx=intersect(p_idx, spouse_target_idx); 
        tpar_idx=intersect(p_idx, confounder_idx); 
        [rr, pp]=condcor(X(:,tpar_idx), X(:,rpar_idx), [], lean); 
        RR=[RR; rr(:)]; 
        PP=[PP; pp(:)]; 
    end            
    show_R(RR,PP); 
    fprintf('    -- For comparison, the same without conditioning on 
the effects(all effects)\n'); 
    RR=[]; PP=[]; 
    for k=1:length(effect_idx) 
        p_idx=parents{effect_idx(k)}; 
        rpar_idx=intersect(p_idx, spouse_target_idx); 
        tpar_idx=setdiff(setdiff(p_idx, rpar_idx), [0]); 
        [rr, pp]=condcor(X(:,tpar_idx), X(:,rpar_idx), [], lean); 
        RR=[RR; rr(:)]; 
        PP=[PP; pp(:)]; 
    end            
    show_R(RR,PP); 
    fprintf('    -- For comparison, effects and their probe parents 
(same effects)\n'); 
    RR=[]; PP=[]; 
    for k=1:min(length(effect_idx), maxval) 
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        p_idx=parents{effect_idx(k)}; 
        rpar_idx=intersect(p_idx, spouse_target_idx); 
        tpar_idx=intersect(p_idx, confounder_idx); 
        [rr, pp]=condcor(E(:,k), X(:,rpar_idx), [], lean); 
        RR=[RR; rr(:)]; 
        PP=[PP; pp(:)]; 
    end    
    show_R(RR,PP); 
    fprintf('    -- For comparison, effects and their confounder 
parents (same effects)\n'); 
    RR=[]; PP=[]; 
    for k=1:min(length(effect_idx), maxval) 
        p_idx=parents{effect_idx(k)}; 
        rpar_idx=intersect(p_idx, spouse_target_idx); 
        tpar_idx=intersect(p_idx, confounder_idx); 
        [rr, pp]=condcor(E(:,k), X(:,tpar_idx), [], lean); 
        RR=[RR; rr(:)]; 
        PP=[PP; pp(:)]; 
    end    
    show_R(RR,PP); 
  
     
    % Target spouses 
    fprintf('==> R (Y, Rj | E(Y, Rj)), E(Y, Rj) effect of Y and Rj\n    
-- Target spouses and target become dependent given their children (max 
of %d souses sampled)\n', maxval); 
    RR=[]; PP=[]; 
    ms=min(length(spouse_target_idx), maxval); 
    for k=1:ms 
        c_idx=children{spouse_target_idx(k)}; 
        [rr, pp]=condcor(Y, X(:,spouse_target_idx(k)), X(:,c_idx), 
lean); 
        RR=[RR rr]; 
        PP=[PP pp]; 
    end 
    show_R(RR,PP); 
    fprintf('    -- For comparison, correlation target spouses and 
target, without conditioning (same spouses)\n'); 
    [RR, PP]=condcor(Y, X(:,spouse_target_idx(1:ms)), [], lean); 
    show_R(RR,PP); 
    fprintf('    -- For comparison, correlation target spouses and 
target, without conditioning (all spouses)\n'); 
    [RR, PP]=condcor(Y, X(:,spouse_target_idx), [], lean); 
    show_R(RR,PP); 
     
    % Effects and Y 
    fprintf('**> R (Y, Ej) -- Effects of the target correlated to the 
target\n'); 
    [RR, PP]=condcor(Y, E, [], lean); 
    show_R(RR,PP); 
    % Effects and the other parents 
    fprintf('==> R (Ei, Cj) and R (Ei, Rj) -- Effects of the target 
correlated to their other parents\n'); 
    fprintf('    -- Parents, which are confounders\n'); 
    RR=[]; PP=[]; 
    for k=1:length(effect_idx) 
        p_idx=parents{effect_idx(k)}; 
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        p_idx=intersect(p_idx, confounder_idx); 
        [rr,pp]=condcor(E(:,k), X(:,p_idx), [], lean); 
        RR=[RR rr]; 
        PP=[PP pp]; 
    end 
    show_R(RR,PP); 
    fprintf('    -- Parents, which are probes\n'); 
    RR=[]; PP=[]; 
    for k=1:length(effect_idx) 
        p_idx=parents{effect_idx(k)}; 
        p_idx=intersect(p_idx, spouse_target_idx); 
        [rr,pp]=condcor(E(:,k), X(:,p_idx), [], lean); 
        RR=[RR rr]; 
        PP=[PP pp]; 
    end 
    show_R(RR,PP); 
     
end 
 
 
 
function [parents, children, no_parent_idx, effect_idx, confounder_idx, 
true_var_idx, rp_idx, spouse_target_idx, spouse_true_idx, 
other_rp_idx]=draw_net(parents, true_num, debug) 
%[parents, children, no_parent_idx, effect_idx, confounder_idx, 
%true_var_idx, rp_idx, spouse_target_idx, spouse_true_idx, 
other_rp_idx]=draw_net(parents, true_num, debug) 
% Show the network. 
% Inputs: 
% parents   -- A cell array containing lists of variable parents 
%               if true_num is given, it is assumed that the first few 
variables are true variables 
%               the variables are numbered 1, ..., i, ...n and 
parents{i} is the list of parents 
%               of variable i. 
%               if true_num=[], parents{1} is the list of true 
variables 
%               and parent{i+1} are the parents of i. 
% true_num  -- Number of true variables. 
% debug     -- debug blag: if 1, show the whole structure. 
% Returns: 
% parents   -- parents of the variables numbered 1, ..., i, ...n: 
parents{i}  
%               is the list of parents of variable i. 
% children  -- children{i} is the list of children of variable i. 
% no_parent_idx -- indices of variables having no parents (includes 
true  
%                and random probes independent of the target. 
% effect_idx -- indices of rpobes which are effects of the target. 
% confounder_idx -- indices of probes which are consequences of treu 
variables 
% true_var_idx -- indices of true variables 
% rp_idx     -- indices of random probes independent of the target 
% spouse_target_idx -- indices of spouses of the target (probes) 
% spouse_true_idx -- indices of spouses of true variables (probes) 
% other_rp_idx -- indices of other random probes, indept of target 
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% 
length(other_rp_idx)+length(spouse_target_idx)+length(spouse_true_idx) 
% ==length(rp_idx) 
  
% Isabelle Guyon -- isabelle@clopine.,com -- October 2007 
  
if nargin<2 | isempty(true_num), 
    true_var_idx=parents{1}; 
    parents=parents(2:length(parents)); 
else 
    % Find the true variables 
    true_var_idx=1:true_num; 
end 
if nargin<3, debug=1; end 
  
% Invert the index 
children=cell(size(parents)); 
no_parent_idx=[]; 
effect_idx=[]; 
confounder_idx=[]; 
for k=1:length(parents) 
    par=parents{k}; 
    if isempty(par) 
        no_parent_idx=[no_parent_idx k]; 
    else 
        if par(1)==0  
            effect_idx=[effect_idx k];  
            par=par(2:length(par)); 
        else 
            confounder_idx=[confounder_idx k];  
        end 
        for j=1:length(par) 
            children{par(j)}=[children{par(j)} k]; 
        end 
    end 
end 
  
% Find the random probes indep Y 
rp_idx=setdiff(no_parent_idx, true_var_idx); 
  
%Spouses: 
spouse_true_idx=[]; 
spouse_target_idx=[]; 
for k=1:length(rp_idx) 
    c_idx=children{rp_idx(k)}; 
    if ~isempty(c_idx) 
        if ~isempty(intersect(c_idx, effect_idx)) 
            spouse_target_idx=[spouse_target_idx, rp_idx(k)]; 
        else 
            spouse_true_idx=[spouse_true_idx, rp_idx(k)]; 
        end 
    end 
end 
other_rp_idx=setdiff(setdiff(rp_idx, spouse_target_idx), 
spouse_true_idx); 
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if 
true_num+length(rp_idx)+length(confounder_idx)+length(effect_idx)~=leng
th(parents) 
    error('Number of variables do no add up'); 
end 
if 
length(other_rp_idx)+length(spouse_target_idx)+length(spouse_true_idx)~
=length(rp_idx) 
    error('Number of probes do no add up'); 
end 
  
fprintf('== Total number of variables: %d ==\n', length(parents)); 
if ~isempty(true_num) 
    fprintf('== Real variables (%d): 1 ... %d\n', true_num, true_num); 
else 
    fprintf('== Real variables (%d):\n', length(true_var_idx)); 
end 
fprintf('== Probes (%d): \n', length(rp_idx)); 
fprintf('  %d spouses of true var: \n', length(spouse_true_idx)); 
if debug 
    for k=1:length(spouse_true_idx) 
        c_idx=children{spouse_true_idx(k)}; 
        fprintf('(%d ->',  spouse_true_idx(k)); 
        for j=1:length(c_idx) 
            fprintf(' %d ', c_idx(j)); 
        end 
        fprintf(')\n'); 
    end 
end 
fprintf('  %d spouses of target: \n', length(spouse_target_idx)); 
if debug 
    for k=1:length(spouse_target_idx) 
        c_idx=children{spouse_target_idx(k)}; 
        fprintf('(%d ->',  spouse_target_idx(k)); 
        for j=1:length(c_idx) 
            fprintf(' %d ', c_idx(j)); 
        end 
        fprintf(')\n'); 
    end 
end 
fprintf('  %d independent of target: ', length(other_rp_idx)); 
MM=max(other_rp_idx); 
mm=min(other_rp_idx); 
if(MM-mm+1== length(other_rp_idx)) 
    fprintf('%d ... %d\n', mm, MM); 
else 
    fprintf('Warning, some probes assigned to be spouses are 
unused\n'); 
end 
fprintf('== Confounders (%d): ', length(confounder_idx)); 
MM=max(confounder_idx); 
mm=min(confounder_idx); 
if(MM-mm+1== length(confounder_idx)) 
    fprintf('%d ... %d\n', mm, MM); 
else 
    if ~isempty(confounder_idx),  
        fprintf('Warning, wierd set\n'); 
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    end 
end 
if debug 
    for k=1:length(confounder_idx) 
        p_idx=parents{confounder_idx(k)}; 
        fprintf('(%d <-',  confounder_idx(k)); 
        for j=1:length(p_idx) 
            fprintf(' %d ', p_idx(j)); 
        end 
        fprintf(')\n'); 
    end 
else 
    nt=[]; 
    np=[]; 
    for k=1:length(confounder_idx) 
        p_idx=parents{confounder_idx(k)}; 
        pt_idx=intersect(p_idx, true_var_idx); 
        pr_idx=intersect(p_idx, rp_idx); 
        nt=[nt length(pt_idx)]; 
        np=[np length(pr_idx)]; 
    end 
    fprintf(' %5.2f+-%5.2f true variable parents, %5.2f+-%5.2f parents 
unrelated to target\n', mean(nt), std(nt), mean(np), std(np)); 
end 
  
fprintf('== Effects (%d): ', length(effect_idx)); 
MM=max(effect_idx); 
mm=min(effect_idx); 
if(MM-mm+1== length(effect_idx)) 
    fprintf('%d ... %d\n', mm, MM); 
else 
    if ~isempty(effect_idx), fprintf('Warning, wierd set\n'); end 
end 
if debug 
    for k=1:length(effect_idx) 
        p_idx=parents{effect_idx(k)}; 
        fprintf('(%d <-',  effect_idx(k)); 
        for j=1:length(p_idx) 
            fprintf(' %d ', p_idx(j)); 
        end 
        fprintf(')\n'); 
    end 
else 
    nc=[]; 
    np=[]; 
    for k=1:length(effect_idx) 
        p_idx=parents{effect_idx(k)}; 
        pc_idx=intersect(p_idx, confounder_idx); 
        pr_idx=intersect(p_idx, rp_idx); 
        nc=[nc length(pc_idx)]; 
        np=[np length(pr_idx)]; 
    end 
    fprintf(' %5.2f+-%5.2f confounder parents, %5.2f+%5.2f parents 
unrelated to target\n', mean(nc), std(nc), mean(np), std(np)); 
  
end 
 



 61

 
 
 
function [r, pval]=condcor(x, y, C, lean) 
%[r, pval]=condcor(x, y, C, lean) 
% Computes the correlation between the column vectors x and y 
% given the column vectors of matrix C. 
% lean -- flag, if 1, do not compute pvalue 
  
if nargin<3, C=[]; end 
if nargout>1 
    if lean 
        pval_compute=0; 
    else 
        pval_compute=1; 
    end 
else 
    pval_compute=0; 
end 
pval=[]; 
  
debug=0; 
  
[p, n]=size(x); 
[pp, m]=size(y); 
if p~=pp, error('wrong dimensions'); end 
  
v=1/sqrt(p); 
  
% Center and normalize  
x=v*standard(x); 
y=v*standard(y); 
if ~isempty(C) 
    C=v*standard(C); 
end 
  
if debug & length(C)==length(x) 
    r_verif= (x'*y - (x'*C) * (y'*C))/sqrt((1-(x'*C)^2) * (1-(y'*C)^2)) 
end 
  
% Project on null space 
if ~isempty(C) 
    proj=C*pinv(C); 
    x=x-proj*x; 
    y=y-proj*y; 
    % Center and normalize again 
    x=v*standard(x); 
    y=v*standard(y); 
end 
  
% Compute dot product 
if pval_compute 
    [R, P]=corrcoef([x, y]); 
    r=R(1:n,n+1:n+m); 
    pval=P(1:n,n+1:n+m); 
else 
    r=x'*y; 
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end 
  
return 
  
% verification: 
% condcor(a, b, c) = (condcor(a, b)-condcor(a, c)*condcor(b, 
c))/sqrt((1-condcor(a, c)^2)*(1-condcor(b, c)^2) ) 
   
 
 
function X=standard(X) 
%X=standard(X) 
% Standardize matrix of column vectors 
  
[p, n]=size(X); 
M=mean(X); 
S=std(X,1); 
X=(X-M(ones(p,1),:)); 
S(find(S==0))=1; 
X=X./S(ones(p,1),:); 
X=X./S(ones(p,1),:); 
function show_R(RR, PP) 
%show_R(RR, PP) 
% Show statistics about vectors of correlation coefficients RR and 
their 
% pvalues PP. 
  
% Isabelle Guyon -- isabelle@clopinet.com -- October 2007 
  
RR=full(abs(RR(:))); 
PP=full(PP(:)); 
[SR0, IR]=sort(-RR); 
  
fprintf('    -- Top 1%%:\t'); 
mval=max(1, round(length(SR0)/100)); 
SR=-SR0(1:mval); 
fprintf('    <abs(R)>=%5.4f+-%5.4f', mean(SR), std(SR));     
if ~isempty(PP),  
    SP=PP(IR(1:mval)); 
    fprintf(', <pval>=%5.4f+-%5.4f\n', mean(SP), std(SP));  
else fprintf('\n');  
end 
  
fprintf('    -- Top 10%%:\t'); 
mval=max(1, round(length(SR0)/10)); 
SR=-SR0(1:mval); 
fprintf('    <abs(R)>=%5.4f+-%5.4f', mean(SR), std(SR));     
if ~isempty(PP),  
    SP=PP(IR(1:mval)); 
    fprintf(', <pval>=%5.4f+-%5.4f\n', mean(SP), std(SP));  
else fprintf('\n');  
end 
  
fprintf('    -- All:\t'); 
fprintf('\t    <abs(R)>=%5.4f+-%5.4f', mean(RR), std(RR));     
if ~isempty(PP), fprintf(', <pval>=%5.4f+-%5.4f\n', mean(PP), std(PP)); 
else fprintf('\n'); end 
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Appendix B: Probe method for scoring causes & consequences 
 
This appendix provides an algorithm to compute the AUC for ROC curves plotting hit 
rate vs. false alarm rate in the classification of “relevant” vs. “irrelevant” variables. 
“Relevancy” can take one of several meanings, including dependency to the target, causal 
relationships to the target, etc. The method is therefore applicable to variable selection, 
where relevant variables are those, which are predictive of a given outcome (e.g. a target 
variable), and irrelevant variables are not. It is also applicable to causal discovery, where 
a score can indicate causal proximity to the target, with the goal of separating e.g. causes 
from non-causes or direct causes from other variables.  
The assumption we make is that we do not know the truth values of the variable 
classification (relevant vs. irrelevant) but we know the “null distribution” of irrelevant 
variables and we can draw as many artificial examples of such irrelevant variables as we 
want (we call them “probes”). It is assumed that an empirical variable ranking (from most 
relevant to least relevant) can be established using training data (samples of variable 
values) and an algorithm of our choice. For instance, such ranking may be established 
using a variable score, where a low score indicates that the variable is more likely to 
belong to one of the classes (e.g. the “relevant variables”) and a high score that it belongs 
to the other (e.g. the “irrelevant ones”). Using the ranking method, we compute the AUC 
for sets of variables intermixed with “random probes”, as an estimate of the AUC for the 
classification “relevant” vs. “irrelevant” variables.  
 
The algorithm (Matlab implementation in Appendix B5) 
The original data consists of a matrix of m lines (samples) and nr columns (real 
variables). The nr real variables include a n+ positive examples (“relevant” variables) and 
a n- negative (nr=n++n-). It is not known which variables are relevant (truth values) nor 
how many of them are relevant, thus n+ and n- are not known. 

1) A number np of artificial random variables called “probes” are drawn from an 
assumed “null distribution”. In turn m samples are drawn from these probes and 
the resulting (m x np) values are added to the original matrix to form an (m x (nr+ 
np)) matrix. 

2) All real variables and probes are ranked with a given algorithm, in decreasing 
order of relevance (most relevant variables come first).  

3) The sum of the ranks of the probes SPR is formed. 
4) The area under the ROC curve for the data including probes is estimated as 

PAUC= [SPR - np.(np+1)/2] / (np.nr) 
In the asymptotic case of infinite number of real variables and probes, PAUC is linearly 
related to the AUC for the classification “relevant” vs. “irrelevant” variables:  

PAUC = (n+/nr) AUC + 0.5 (n-/nr). 
This monotonic dependency allows us to use PAUC as a surrogate for the real AUC for 
algorithm comparison and model selection. In the finite sample case, we will use the 
following estimator of the PAUC standard deviation: 

σ = 0.5 sqrt[sen(1-sen)/ nr + spe(1-spe)/ np] 
where spe = 1 – k/neg, sen = (rk – k)/pos, rk is the rank of the kth probe and k maximizes 
the average of sen and spe. 
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The algorithm is justified in what follows. 
 
Calculation of the AUC and the Gini index 
Assume we are given a ranked list of objects belonging to one of 2 classes, a positive and 
a negative class (for instance, causes and non-causes).  We have “pos” examples of the 
positive class and “neg” examples of the negative class, and  neg+pos=m=tot (the total 
number of examples). 
 
We can compute, for each value of the rank: 
fp: the number of false positive 
tp: the number of true positive 
fn: the number of false negatine 
tn: the number of true negative. 
We have tp+fn=pos and tn+fp=neg 
 
We define: 
fpr (false positive rate or false alarm rate)=fp/neg 
fnr (false negative rate)=fn/pos 
Hit rate=sensitivity=tp/pos=1-fnr 
Specificity=tn/neg=1-fpr 
sel (the fraction of selected up to the rank)=fp+tp 
 
Figure B1 shows how these statistics relate to one another. 
To avoid notation confusions, in what follows, if we are considering the real variables 
only, we use: 
tot=nr=number of real variables 
pos=n+=number of examples of the positive class 
neg=n-=number of the negative class 
If we are adding probe variables, we use: 
tot=nr+np=number of variables including real and probes 
pos=nr=number of real variables 
neg=np=number of probes 
 
The ROC curve (Figure B2) plots the “hit rate” vs. the “false alarm rate” i.e. (1-fnr) vs. 
fpr. The AUC is the area under the ROC curve. Note that it is identical to the area under 
the curve plotting sensitivity (aka “hit rate”) vs. specificity (1-fpr). 
 
The lift curve (often used in marketing) plots “hit rate” vs. the fraction of selected “sel” 
(Figure B3). The Gini index is defined as the ratio M/O and it can be shown (Appendix 
B1) that Gini = 2 AUC –1. 
 
This provides a means of computing efficiently the AUC using the area under the lift 
curve, because it is easy to compute the area under the lift curve. The area above the lift 
curve (AALC) can be upper and lower bounded by Lebesgue integrals using the sum of 
the ranks of the objects of the positive class (when those are sorted with the most relevant 
coming first) normalized by pos*tot (Figure B4): 
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[sum(ranks_of_pos)-pos]/(pos*tot)< AALC < sum(ranks_of_pos)/(pos*tot) 
Hence the estimation of the AALC by the trapeze method : 
AALC ~ [sum(ranks_of_pos)-pos/2]/(pos*tot) 
Thus the area M is : 
M = 0.5 - [sum(ranks_of_pos)-pos/2]/(pos*tot) 
The area O is given by: 
O = 0.5 - 0.5*pos/tot 
Thus  
Gini = M/O = {0.5 - [sum(ranks_of_pos)-pos/2]/(pos*tot)} / (0.5-0.5*pos/tot) 
Gini = [pos*(tot+1)– 2 sum(ranks_of_pos)] / [pos*(tot-pos)] 
 
Note that by symmetry with the negative class, we also have: 
 
Gini = [neg*(tot+1) – 2 sum(ranks_of_neg)] / [neg*(tot-neg)]   
 
where sum(ranks_of_neg) is the sum of the ranks of the negative class when the ranking 
is such that the most likely to be negative come first, i.e. the ranking is done in order of 
increasing probability of being « relevant ».  
 
Note that we can sort one way or the other. For instance, if we sort in order of increasing 
probability of being « relevant » (object believe to be from the negative class come first) 
and compute the sum of the ranks of the positive class and call it Sp we can relate it to 
sum(ranks_of_pos), the quantity defined above when sorting in the other direction: 
sum(ranks_of_pos) = sum_pos(tot – j + 1) = pos*tot – Sp + pos 
thus 
Gini = [pos*tot – 2 (pos*tot-Sp+pos) + pos] / [pos*(tot-pos)] 
        = [2 Sp – pos*(tot+1)] / (pos*neg) 
and 
AUC=(Gini+1)/2= 0.5 [2 Sp – pos*tot – pos + pos*tot – pos2] / (pos*neg) 
  
AUC = [Sp – pos*(pos+1)/2 ] / (pos*neg) 
 
This last formula is the basis for the algorithm shown in Appendix B2. 
 
We can also sort in decreasing order of relevance (most relevant objects believed to be 
from the positive class come first) and compute the sum of the ranks of the positive class 
and call it Sn. Similarly as before, we have : 
 
Gini = [2 Sn – neg*(tot+1)] / [neg*(tot-neg)] (1) 
 
Thus the alternative formula for the AUC: 
 
AUC = [Sn – neg*(neg+1)/2 ] / (pos*neg)  (2) 
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Relationship between ROC curve and negative lift curve 
While in marketing the lift curve is the most useful way of visualizing the data, for our 
purpose, we rather focus on the negative class for the purpose of using the “probe” 
method. In Figure B7, we represent the non-normalized “negative lift curve”, that is the 
number of false positive as a function of the total number of examples selected. The 
negative lift curve is obtained by normalizing the x axis by “tot” and the y axis by “neg”. 
 
If we change coordinates to the green axes, we obtain the non-normalized ROC curve. 
The ROC curve is obtained by normalizing the number of true positive by “pos” to get 
the sensitivity and the number of true negative by “neg” to get the specificity (Here we 
adopt as the definition of the ROC curve the plot “sensitivity vs. specificity, which has 
same AUC as hit rate vs. false alarm rate and is obtained by reversing the x axix of the 
ROC curve). 
From this diagram, we easily see how the AUC relates to the area under the false positive 
rate A (negative lift) and the ideal negative lift A*. The AUC is the green shaded area, 
after normalizing by pos neg. hence: 
AUC = (1-A-A*)(tot/pos). 

 
Figure B7: Relationship between ROC curve and lift curve. 

 
From Figure B7, we also see that for a given point on the ROC curve, the sensitivity is 
given by: 
specificity = 1 – k/neg     (3) 
sensitivity = (rk – k)/pos     (4) 
where rk is the rank of the kth negative example in the example ordering, where most 
relevant come first. 
We easily confirm Equation 2 with  
AUC = (1/neg) Σk=1:neg sensitivity    (5) 
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AUC error bar 
Many estimators of the AUC error bars have been proposed. Some are easy to compute 
but provide loose bounds, others are more accurate but very computationally expensive. 
For the purpose of the challenge, we propose to compromise and use an empirical 
formula easy to justify and which gives satisfactory results in numerical experiments. 
 
We define the balanced accuracy (BAC) as: 

BAC = 0.5(sensitivity+specificity) 
where, if we call tp the number of true positive and tn the number of true negative , we 
define sensitivity=tp/pos (accuracy of classification for positive examples) and 
specificity=tn/neg (accuracy of classification for negative examples). In the case where 
the score upon which the ranking is based is binary (e.g. hard classification decisions are 
used rather than a discriminant value), we have exactly AUC=BAC=1-BER, where BER 
is the balanced error rate defined as 1-BAC (see Appendix B3 for a proof). 
 
The idea is to approximate the AUC with the maximum BAC on the ROC curve 
(Figure B8).  Subsequently, we will use the BAC error bar to estimate the AUC error bar. 
From Equations (3) and (4) giving the sensitivity and specificity , we see that our 
approximation amounts to computing: 

AUC ≅  max BAC = maxk 0.5[(rk – k)/pos + 1 – k/neg] 
In what follows, we call k* the value of k maximizing BAC and sen and spe the 
corresponding values of the sensitivity and specificity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B8: Approximation of the ROC curve. We replace the AUC by the 
largest BAC. 
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A BAC or a BER error bar estimator is obtained as follows.  As is known, for i.i.d. errors 
corresponding to Bernouilli trials with a probability of error p, the standard deviation of 
the error rate E computed on a data set of size n is sqrt(p(1 - p)/n). This result can be 
adapted to the balanced error rate. Let us call pos the number of examples of the positive 
class, neg the number of examples of the negative class, p+ the probability of error on 
examples of the positive class (one minus the expected value of the sensitivity), p- the 
probability of error on examples of the negative class (one minus the expected value of 
the specificity), and E+ and E-  their corresponding  empirical estimates. Both processes 
generating errors on the positive or negative class are Bernouilli processes. By definition, 
the balanced error rate is BER = (1/2)(E++ E-), and its variance is 
var(BER)=(1/4)(var(E+) + var(E-)). Therefore, the standard deviation of the BER (and 
that of the BAC) using n+ and n-  examples is: 
σ = 0.5 sqrt(p+(1-p+)/pos + p-(1-p-)/neg) 
For sufficiently large data sets, we may substitute p+ by E+ and p- by E- to compute σ.  
Equivalently, since sensitivity=1- E+ and specificity=1- E+ we obtain the following 
estimator of the BAC standard deviation: 
σσσσ = 0.5 sqrt(sen(1-sen)/pos + spe(1-spe)/neg)   (6) 
where we abbreviate sensitivity by sen end specificity by spe. 
 
Application to the probe method 
Assume that we are using the “probe” method and inject artificial probes, which are 
examples of the negative class for which we know the truth value (negative). The “real 
variables” may be either from the positive class or the negative class. Let us call: 
nr: the total number of real variables 
np: the total number of probes  
nsp: the number of selected probes 
It is common to plot the fraction of probes selected nsp/np as a function of the number of 
variables selected (Figure B9). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure B9: Area under the fraction of probe selected. 
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Doing that, we assume that we rank the variables in decreasing order of relevance (best 
first). We can define the sum of the rank of the probes SPR for that order.  
The area A is given by 
A=1 - (SPR –np/2)/(np (np+nr)).  
The area A* corresponding to the best achievable A (where all the probes show up last in 
the ranking) is given by  
A*=0.5 np/(np+nr)=0.5(1- nr/(np+nr)). 
Using Equation (1), we get for the probes 
PGini = [2 SPR - np.(np+nr+1)] / (np.nr),  
therefore  
PGini=(1-2A)(np+nr)/ nr 
PGini=(1-2A)/(1-2A*) 
PGini=(0.5-A)/(0.5-A*) 
This last formula is equivalent to that of Figure B4. 
 
Simply, the AUC for the probe method, which we call PAUC is obtained by computing 
the regular AUC for truth values +1 for all real variables and –1 for all probes (instead of 
+1 for the positive class variables and –1 for the negative class variables, in the absence 
of probes). Thus, the real variables become the positive class and the probes the negative 
class. For Equation (2), we get: 
PAUC= [SPR - np.(np+1)/2] / (np.nr) 
We show in Appendix B4 that asymptotically (for an infinite number of examples and 
probes): 
PAUC= (n+/nr) AUC + 0.5 n-/nr 
where AUC is the true AUC, which cannot be computed and n+ and n- are the unknown 
number for positive and negative examples for the real variables. 
 
An error bar on PAUC is obtained in the finite sample case from Equation (6): 
σσσσ = 0.5 sqrt(sen(1-sen)/pos + spe(1-spe)/neg) 
 
with (from Equations (3) and (4)) 
spe = 1 – k/neg      
sen = (rk – k)/pos 
for the value of k, which maximizes: BAC = 0.5(sen+spe). 
 
The error BAR on PAUC may be use to determine the significance of the difference 
between two ranking methods yielding values of PAUC P1 and P2 and corresponding 
standard deviations σ1 and σ2. The difference will be called significant e.g. if  
abs(P1-P2) > 2 sqrt(σ1

2 + σ2
2). 
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Numerical simulations: 
 
We illustrate the result PAUC = (n+/nr) AUC + 0.5 (n-/nr) with some simple numerical 
simulation. The code is reported in Appendix B6. In this example, we have 2000 “real 
variables” and 2000 “probes”. We vary the fraction of positive examples (n+/nr) and 
compute a noisy score for variables as 
D=Y+0.5*randn(size(Y))+k*noise*randn(size(Y)); 

From D we compute the “real” AUC and PAUC. We plot PAUC as a function of AUC 
(Figure B10). 
 

 
Figure B10: Relationship between the real AUC and that estimated by the probe 
method. The dots represent samples of the pairs {“real”AUC, PAUC} for various 
fractions of positive examples, when 2000 real variables and 2000 probes are used. The 
boxes show the 1 sigma error bars for AUC and PAUC. The thick lines are plots of 
y=(n+/nr) AUC + 0.5 (n-/nr). The thin lines indicate the estimated error tube. 
 
We verified that for all fractions of positive examples considered the regression 
coefficients match closely the theoretical values obtained in the final sample size limit: 
1) frac_pos=0.15, frac_neg=0.85, w=0.148399, 2*b=0.851758 
2) frac_pos=0.3, frac_neg=0.7, w=0.297821, 2*b=0.702991 
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3) frac_pos=0.45, frac_neg=0.55, w=0.445261, 2*b=0.556114 
4) frac_pos=0.6, frac_neg=0.4, w=0.601203, 2*b=0.398861 
5) frac_pos=0.75, frac_neg=0.25, w=0.737146, 2*b=0.271517 
6) frac_pos=0.9, frac_neg=0.1, w=0.8821, 2*b=0.124806 
 
In the finite sample case, we have errors both on the estimates of both AUC and PAUC. 
Note that in practice we would not be able to compute the “real” AUC. Still, to verify the 
validity of our error bar estimates, we can use it here. We compute: 

- The average empirical sigma as the average distance of the points to the line 
y=(n+/nr) AUC + 0.5 (n-/nr). 

- The average theoretical sigma as the sigma_th=mean(sqrt(σAUC
2 +σPAUC

2)), 
computing σAUC and σPAUC

  with formula (6). 
 
1) Average empirical sigma=0.0089, Average theoretical sigma=0.0149 
2) Average empirical sigma=0.0091, Average theoretical sigma=0.0127 
3) Average empirical sigma=0.0085, Average theoretical sigma=0.0121 
4) Average empirical sigma=0.0092, Average theoretical sigma=0.0122 
5) Average empirical sigma=0.0095, Average theoretical sigma=0.0132 
6) Average empirical sigma=0.0126, Average theoretical sigma=0.0171 
 
We see that our estimate is slightly pessimistic, but gives the right order of magnitude. 
To visualize our error bar estimates, we drew boxes of sides 2 σAUC x 2 σPAUC around a 
few points. The box usually overlaps with the thick line. We also drew thin lines at 
sigma_th/cos(alpha), where alpha is the slope of the line. This allows us to draw an error 
bar taking into account both the error for estimating AUC and that for estimating PAUC.  
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Appendix B1: 
Proof of Gini = 2 AUC –1 
L = lift 
Hitrate = tp/pos 
Farate = fp/neg 
Selected = sel/tot = (tp+fp)/tot = pos/tot.tp/pos + neg/tot.fp/neg = pos/tot Hitrate + neg/tot 
Farate 
AUC = sum Hitrate d(Farate) 
L = sum Hitrate d(Selected) 
   = sum Hitrate d(pos/tot Hitrate + neg/tot Farate) 
   = pos/tot sum Hitrate d Hitrate + neg/tot sum Hitrate d Farate 
   = ½ pos/tot + neg/tot AUC 
2L-1 = -(1-pos/tot) + 2(1-pos/tot) AUC = (1-pos/tot) (2AUC-1) 
Gini = (L-1/2)/(1-pos/tot)/2 
       = (2L-1)/(1-pos/tot) = 2AUC-1 

 
Appendix B2 
function area = auc(Output, Target) 
%area = auc(Output, Target) 
% This computation gives the same results as the AUC when there are no 
% ties. 
% Inputs: 
%  Output -- Matrix of classifier discriminant values of dim (num 
pattern, num tries) 
%  Target -- Vector of corresponding +-1 target values. 
%  Returns: 
%  area -- Area under the ROC curve. 
% We still need to work out the case of ties. 
% From Hollander and Wolfe pp 107 & 117. 
  
% Isabelle Guyon -- isabelle@clopinet.com -- June 2005 

 
% Compute the Wilcoxon statistic 
midx=find(Target<0); 
nidx=find(Target>0); 
m=length(midx); 
n=length(nidx); 
[u,i]=sort(Output); 
S(i)=1:n+m; 
W=sum(S(nidx)); 
  
% Compute the Mann-Withney statistic 
U=W-n*(n+1)/2; 
  
% Compute the AUC 
area=U/(m*n); 



 74

Appendix B3 
Demonstration that AUC=1-BER in the case of binary outputs. 
Assume that the outputs are binary ±1 instead of being discriminant values. Then we 
have the following situation for the histogram of output values: 

 
 
 
 
 
 
 
 
 
 

Figure B6a 
 
With at mid point the sensitivity and specificity given by Sen0=tp/(tp+fn) and the 
specificity given by Spe0=tn/(tn+fp). 
We have the following ROC curve: 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure B6b 

Therefore,  
1-AUC = Spe0(1-Sen0)/2+ Sen0(1-Spe0)/2+ (1-Sen0)(1-Spe0) 
 = (1/2)( Spe0 - Spe0 Sen0 + Sen0 - Spe0 Sen0 + 2 - 2 Spe0 - 2 Sen0 + 2 Spe0 Sen0 ) 
 = 1- (Spe0 + Sen0)/2 
 = BER ! 
 
Since we have BER=1-BAC, we deduce that BAC=AUC. 
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Appendix B4 
Proof of PAUC= (n+/nr) AUC + 0.5 n-/nr 
 
From Equations (4) and (5), we have: 
AUC = (1/neg) Σ k=1:neg (rk – k)/pos  
which for the real variables gives: 
n+ AUC = (1/n-) Σ k=1:n- (rk – k) 
and for the combination of real variables and probes gives: 
nr PAUC = (1/np) Σ k=1:np (rk

(probe) – k) 
 
We assume that the negative examples and the probes are drawn from the same 
distribution. Consider the case where real variables and probes are intermixed. On 
average, half of the negative example fall before the mean value of the rank of the probe 
and half after. Hence, if we call rk the rank of a probe if there were no negative examples 
(hence only positive examples and probes), we have on average over all possible 
drawings of negative examples and probes: 

(1/np) Σ k=1:np (rk
(probe)) = (1/np) Σ k=1:np (rk) = (1/np) + neg/2.  

In the limit of infinite number of probes and negative examples we define the 2 following 
quantities: 
Ar=lim n-!∞ (1/n-) Σ k=1:n- (rk – k) 
Ap=lim np!∞ (1/np) Σ k=1:np (rk

(probe) – k)= lim np!∞ (1/np) Σ k=1:np (rk – k) + neg/2  
Thus Ap=Ar +neg/2 
In the limit of infinite number of probes and negative examples 
n+ AUC = Ar and nr PAUC = Ap 
therefore 
nr PAUC = Ap = Ar +neg/2 = n+ AUC +neg/2 
and 
PAUC= (n+/nr) AUC + 0.5 n-/nr  € 
 
We get a similar result with the BAC: 
BAC=0.5(tp/n+ + tn/n-)=0.5(sen+spe) 
PBAC=0.5((tp+fp)/nr + (np-nsp)/np) 
Let us call SEN and SPE the expected value of the sensitivity and specificity.  
We have: 
SPE= lim n-!∞ tn/n-=lim np!∞ (np-nsp)/np 
SEN= lim n+!∞ tp/n+ 
lim np!∞  PBAC = 0.5 ((tp+fp)/nr + SPE 
lim np!∞  lim n-!∞ PBAC = 0.5 ((SEN n+ + (n- - tn) )/nr + SPE 
lim np!∞  lim n-!∞  lim n+!∞ PBAC = 0.5 ((SEN n++ (1 – SPE) n-)/nr + SPE 
          = 0.5 (n+/nr) (SEN+SPE) + 0.5 n- /nr 
          = (n+/nr) lim n-!∞  lim n+!∞ BAC + 0.5 n- /nr 
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Appendix B5: The final algorithm 
 
function [area, sigma] = auc2(Output, Target, pos_small) 
%[area, sigma] = auc2(Output, Target, pos_small) 
% This is the algorithm proposed for  
% computing the AUC and the error bar. 
% It is assumed that the outputs provide a score 
% with the negative examples having the lowest score 
% unless the flag pos_small = 1. 
  
% Isabelle Guyon -- isabelle@clopinet.com -- November 2007 
  
if nargin<3, pos_small=0; end 
if ~pos_small, Output=-Output; end 
  
negidx=find(Target<0); 
posidx=find(Target>0); 
neg=length(negidx); 
pos=length(posidx); 
[u,i]=sort(Output); % best come first 
S(i)=1:(neg+pos); 
SEN=(sort(S(negidx))-[1:neg])/pos; 
SPE=1-(1:neg)/neg; 
area=sum(SEN)/neg; 
  
two_BAC=SEN+SPE; 
[u,k]=max(two_BAC); 
sen=SEN(k); 
spe=SPE(k); 
sigma= 0.5 * sqrt(sen*(1-sen)/ pos + spe*(1-spe)/ neg); 
 
Appendix B6: Numerical simulations 
 
% We verify the formula AUC = frac_pos PAUC + 0.5 frac_neg 
% in the large sample size limit. 
  
col='rgbkmc'; 
noise=0.01; 
probe_num=2000; 
real_num=2000; 
N=probe_num+probe_num; 
fp={}; 
repeat_num=500; 
AReal=zeros(repeat_num, length(col)); 
AProbe=zeros(repeat_num, length(col)); 
EReal=zeros(repeat_num, length(col)); 
EProbe=zeros(repeat_num, length(col)); 
frac_pos=zeros(length(col),1); 
frac_neg=zeros(length(col),1); 
for j=1:length(col) 
    frac_pos(j)=0.15*j; 
    fp{j}=['FracPos=' num2str(frac_pos(j))];  
    frac_neg(j)=1-frac_pos(j); 
    pos_num=real_num*frac_pos(j); 
    neg_num=real_num*frac_neg(j); 
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    Y=ones(N,1); 
    probe_idx=1:probe_num; 
    neg_idx=probe_num+1:probe_num+neg_num; 
    pos_idx=probe_num+neg_num+1:N; 
    real_idx=[neg_idx, pos_idx]; 
    Y(probe_idx)=-1; 
    Y(neg_idx)=-1; 
     
    Yprobe=ones(N,1); 
    Yprobe(probe_idx)=-1; 
    for k=1:repeat_num 
        % Compute a fake discriminant value correlated with Y 
        D=Y+0.5*randn(size(Y))+k*noise*randn(size(Y)); 
        Dreal=D(real_idx); 
        Yreal=Y(real_idx); 
  
        [Aprobe, Eprobe]=auc2(D, Yprobe); 
        [Areal, Ereal]=auc2(Dreal, Yreal); 
        AReal(k,j)=Areal; 
        AProbe(k,j)=Aprobe; 
        EReal(k,j)=Ereal; 
        EProbe(k,j)=Eprobe; 
    end 
    % Linear fit 
    w=[AReal(:,j), ones(size(AReal(:,j)))]\AProbe(:,j); 
    Probe_hat=[AReal(:,j), ones(size(AReal(:,j)))]*w; 
    fprintf('frac_pos=%g, frac_neg=%g, w=%g, 2*b=%g\n', frac_pos(j), 
frac_neg(j), w(1), 2*w(2)); 
end 
  
figure; hold on 
for j=1:length(col) 
    plot(AReal(:,j), frac_pos(j) * AReal(:,j) + 0.5 * 
frac_neg(j),[col(j) '-'] ); 
end 
legend(fp, 'Location', 'NorthWest'); 
for j=1:length(col) 
    plot(AReal(:,j), AProbe(:,j), [col(j) '.']); xlabel('Real AUC'); 
ylabel('Probe AUC'); 
end 
% Take at random a few points and draw the error box 
Mini=min(min(AReal)); 
Maxi=1; 
div=10; 
vals=[Mini:(Maxi-Mini)/div:Maxi]; 
for j=1:length(col) 
    for k=1:div+1 
        [m,i]=min(abs(AReal(:,j)-vals(k))); 
        xm=AReal(i,j)-EReal(i,j); 
        xM=AReal(i,j)+EReal(i,j); 
        ym=AProbe(i,j)-EProbe(i,j); 
        yM=AProbe(i,j)+EProbe(i,j); 
        plot([xm, xM, xM, xm, xm], [yM, yM, ym, ym, yM], [col(j) '-']); 
    end 
end 
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% Note: it is normal that empirical is larger then theoretical because 
of 
% the uncertainty on AReal 
% Other method 
Ediag=zeros(size(EProbe)); 
for j=1:length(col) 
    % Compute the average distance to the line 
    W1=frac_pos(j); 
    W2=-1; 
    N=sqrt(W1.^2+W2.^2); 
    W1=W1./N; 
    W2=W2./N; 
    W0=0.5 * frac_neg(j)./N; 
    sigma_emp=sqrt(mean((W1 * AReal(:,j) + W2 * AProbe(:,j) + W0).^2)); 
    sigma_th=mean(sqrt(EReal(:,j).^2+EProbe(:,j).^2)); 
    fprintf('Average empirical sigma=%5.4f, Average theoretical 
sigma=%5.4f\n', sigma_emp, sigma_th); 
    alpha=asin(frac_pos(j)); 
    Eboth(:,j)= sigma_th/cos(alpha); % Correct for the uncertainty of 
real AUC 
end 
  
figure; hold on 
for j=1:length(col) 
    plot(AReal(:,j), frac_pos(j) * AReal(:,j) + 0.5 * 
frac_neg(j),[col(j) '-'], 'LineWidth', 2 ); 
end 
legend(fp, 'Location', 'NorthWest'); 
for j=1:length(col) 
    plot(AReal(:,j), AProbe(:,j), [col(j) '.']); xlabel('Real AUC'); 
ylabel('Probe AUC'); 
end 
% Draw a tube 
for j=1:length(col) 
    emed=Eboth(:,j); 
    plot(AReal(:,j), emed+(frac_pos(j) * AReal(:,j) + 0.5 * 
frac_neg(j)),[col(j) '--'] ); 
    plot(AReal(:,j), -emed+(frac_pos(j) * AReal(:,j) + 0.5 * 
frac_neg(j)),[col(j) '--'] ); 
end 
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Predictions: F(x)

Class -1 Class +1

Truth:
y

Class -1 tn fp

Class +1 fn tp

Cost matrix
Predictions: F(x)

Class -1 Class +1

Truth:
y

Class -1 tn fp

Class +1 fn tp

neg=tn+fp

Total

pos=fn+tp

sel=fp+tprej=tn+fnTotal m=tn+fp
+fn+tp

False alarm = fp/neg

Class +1 / Total

Hit rate = tp/pos

Frac. selected = sel/m

Cost matrix

Class+1
/Total

Precision
= tp/sel

False alarm rate = type I errate = 1-specificity
Hit rate = 1-type II errate = sensitivity = recall = test power

Performance Assessment

Compare F(x) = sign(f(x)) to the target y, and report:
• Error rate = (fn + fp)/m
• {Hit rate , False alarm rate} or {Hit rate , Precision} or {Hit rate , Frac.selected} 
• Balanced error rate (BER) = (fn/pos + fp/neg)/2 = 1 – (sensitivity+specificity)/2
• F measure = 2 precision.recall/(precision+recall)

Vary the decision threshold F(x) = sign(f(x)+θθθθ) and plot: 
• ROC curve: Hit rate vs. False alarm rate
• Lift curve: Hit rate vs. Fraction selected
• Precision/recall curve: Hit rate vs. Precision

 
Figure B1 
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Figure B3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B4: The yellow area represents the area above the lift curve. It is estimated by 
the trapeze method as [sum(rank_of_pos)-pos/2] /(pos*tot). The red shaded area is the 
area above the ideal lift, which is equal to 0.5 pos/tot. 
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FDR = nfp/nsc 

fp=false positive=features falsely found relevant
sc= selected candidate features 
nfp is unknown, but FPR can be calculated 
from pval or using the probe method. 
Bound the FDR:

FPR = nfp/nirr ≥ nfp/n  (irr=irrelevant feat.)

FDR = (nfp/n) (n/nsc) ≤ FPR n/nsc

FDR ≤ FPR n/nsc ≤ α

We obtain FPR ≤ α nsc/n, intermediate 
between FPR ≤ α  and FPR ≤ α/n.

False Discovery Rate

nfp

ntn

ntp

selected features
rejected features

nfn

nsc

nirr

n

nsp

np

FPR = nfp/nirr ≅ nsp/np  
Figure B5 
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Appendix C: ChemTK QSAR descriptors used for SIDO 
 
ChemTK generates a variety of descriptors or keys, which are used as features in the 
SIDO dataset. These include properties such as molecular weight, hydrogen-bond donor 
and acceptor counts, and rotatable bond counts, for a particular data set. Other keys 
include 2- and 3-point pharmacophore descriptors. We provide below excerpts of the 
ChemTK manual to help decoding the key symbols. 
  
Smarts keys  
ChemTK supports the Smarts query language developed by Daylight CIS, Inc. That 
company’s website (www.daylight.com) provides an excellent tutorial for the Smarts 
language, so details of the syntax will not be provided here. Note that Boolean queries 
(e.g., “[c,n;!D3]”) and recursive queries (e.g., “[$(C=O)]”) are both supported.  
In addition, users may specify named-property queries (see below) within a Smarts 
pattern using the angled bracket syntax (<>). For instance, the query 
“<HAcc>~C~<HAcc>” can be used to search for two hydrogen-bond acceptors 
connected via a single Carbon atom. The query names can correspond either to ChemTK 
defaults, or to user-defined queries as described below. Note that any named-property 
queries are assumed to describe single atoms; if multi-atom queries are used, only the 
information pertaining to the first atom will be retained.  
 
Pharmacophore keys 
ChemTK uses a type of pharmacophore that measures distance via bond connectivity 
rather than a typical three-dimensional distance. For instance, to describe a hydrogen-
bond acceptor and hydrogen-bond donor separated by five connecting bonds, the 
corresponding key string would be “HAcc.HDon.5”. More generally, a ChemTK 
pharmacophore contains two components: a list of features (hydrogen-bond acceptor, 
donor, etc.) and a list of pairwise distances measured in bond counts. Thus a 3-point 
pharmacophore has three features and three distances, while a 4-point pharmacophore has 
four features and six distances. In a key string used to represent a pharmacophore, all 
elements of the pharmacophore are separated by “.”. Thus the following are examples of 
valid pharmacophore strings:  
HAcc.HAcc.1  
HDon.HDon.ExtArom.2.2.2  
HAcc.HDon.Pos.ExtRing.2.5.2.3.1.2  
The order in which the bond-based distances are listed in the above examples must 
correspond exactly to the order of the listed features, and should reflect the order of 
pairwise iteration. Hence in the third example, the six consecutive distances correspond 
to the following feature pairs: HAcc-HDon, HAcc-Pos, HAcc-ExtRing, HDon-Pos, 
HDon-ExtRing, Pos-ExtRing.  
The following are included in the default feature list:  
HAcc. Hydrogen-bond acceptor.  
HDon. Hydrogen-bond donor.  
Neg. Explicit negative charge.  
Pos. Explicit positive charge.  
ExtRing. Ring atom having a neighbor atom external to the ring.  
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ExtArom. Aromatic ring atom having a neighbor atom external to the ring.  
ExtAliph. Aliphatic ring atom having a neighbor atom external to the ring.  
 
Ring System keys  
This option yields a key set comprised of all unique ring systems contained in the set of 
input molecules. A ring system is defined as any number of single or fused rings 
connected by an unbroken chain of atoms. The simplest example would be either a single 
ring (e.g., benzene) or a single fused system (e.g., naphthalene). A more complex case 
would be these same two example systems (benzene and naphthalene) connected together 
by a chain of carbon atoms. Any connecting chains must be devoid of any terminating 
branches (such as a carbonyl group), such that all atoms in the final ring-system structure 
will always be connected to at least two other atoms. The user can place lower and upper 
bounds on the number of individual rings allowed in a ring system.  
Keys are distinguished using atom type and aromaticity only, and are represented using a 
notation similar to Daylight Smarts. Thus a benzene ring would be represented using the 
notation “c1ccccc1”. Counts of rings in a system are based on the typical SSSR 
definition, whereby, for example, benzene has one ring, naphthalene two, and a basic 
steroid scaffold four.  
 
Unbranched Fragment keys  
This option yields a key set comprised of all unique non-branching fragments contained 
in the set of input molecules. The user must specify a maximum and minimum size (in 
atoms) for all fragments. Keys are distinguished using atom type and aromaticity only, 
and are represented using a notation similar to Daylight Smarts. Thus, using the aniline 
molecule as an example, the two-atom keys are “cc” and “cN”; the three-atom keys are 
“ccc” and “ccN”; and so forth.  
ChemTK may generate a special type of unbranched fragments called isotopic 
fragments. Keys of this type are annotated with special symbols that describe the precise 
ring topology of the fragment. For example a simple non-annotated key such as “cc” 
describes two aromatic carbon atoms connected by a single or aromatic bond. In contrast, 
the annotated key “[c;i1][c;i2]” describes a similar fragment, but also specifies a 
requirement that the first atom belong to a single ring (arbitrarily labeled 1) and that the 
second atom belong to a single ring different from the first. While the first key could 
equally match a single benzene ring, the juncture atoms of a naphthalene system, or the 
bridge atoms in a bi-phenyl structure, the latter key can match only the third example, 
since only in that case do the two atoms belong to single and distinct rings. Note that 
given a particular set of bounds on fragment size, the number of isotopic fragments is 
ordinarily far greater than the number of standard unbranched fragments, and the time 
required for key generation is correspondingly greater as well.  
 
Branched Fragment keys  
This option yields a key set comprised of all unique branched fragments contained in the 
set of input molecules. This method is intended to provide keys having a richer, more 
complex description than those available through the Ring System and Unbranched 
Fragment approaches. A detailed definition of branched fragment will not be provided in 
this Reference Guide. Briefly, each fragment is constructed through an “assembly” of 
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shortest-path unbranched fragments, where each of the latter is required to be bounded by 
two atoms belonging to one or more pre-defined “terminal-atom” types selected by the 
user. The following options are available as terminal-atom types:  
C. Non-aromatic Carbon atom.  
c. Aromatic Carbon atom.  
N. Non-aromatic Nitrogen atom.  
n. Aromatic Nitrogen atom.  
O. Non-aromatic Oxygen atom.  
o. Aromatic Oxygen atom.  
S. Non-aromatic Sulfur atom.  
s. Aromatic Sulfur atom.  
P. Non-aromatic Phosphorus atom.  
HAcc. Hydrogen-bond acceptor.  
HDon. Hydrogen-bond donor.  
ExtRing. Ring atom having a neighbor atom external to the ring.  
ExtArom. Aromatic ring atom having a neighbor atom external to the ring.  
ExtAliph. Aliphatic ring atom having a neighbor atom external to the ring.  
Some of these feature types are discussed in the section on Pharmacophore keys, as well 
as in the Query Formats section of this Reference Guide. In particular, see the 
discussion in the former section regarding group features, of which ExtRing, ExtArom, 
and ExtAliph are examples. The treatment of group features in the branched-fragment 
method is somewhat different from their treatment in the pharmacophore approach. Here, 
the requirement is that any branched fragment containing a group feature must contain no 
other feature that intersects the atoms described by the group feature. Thus, a branched-
fragment key containing the ExtArom feature might validly describe a pyridine-
containing molecule, but it is invalid for the features ExtArom and n (aromatic Nitrogen) 
to simultaneously describe the same pyridine ring: the ExtArom group feature excludes 
all other features from hitting the ring.  
Branched-fragment keys are distinguished using atom type and aromaticity only, and are 
represented using a notation similar to Daylight Smarts. All feature atoms are designated 
using the angled brackets (“<>”) notation. Thus a key using the features O, N and 
ExtArom might have a representation similar to the following: 
“[<O>]CC[<N>]CC[<ExtArom>]1ccccc1”.  
  
Named-property keys  
Act. Molecule activity. Note that if a user does not specify an activity field when an SD 
file is first opened, a value of zero is stored.  
ArRing. Aromatic ring atom. [Group feature].  
ExtRing. Ring atom having a neighbor atom external to the ring. [Group feature].  
ExtArom. Aromatic ring atom having a neighbor atom external to the ring. [Group 
feature].  
ExtAliph. Aliphatic ring atom having a neighbor atom external to the ring. [Group 
feature].  
HAcc. Hydrogen-bond acceptor atom.  
HDon. Hydrogen-bond donor atom.  
MolWeight. Molecular weight.  
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Neg. Explicit negative charge.  
Pos. Explicit positive charge.  
Ring. Ring atom. [Group feature].  
RotBond. Rotatable bond.  
Generally, these names are used in conjunction with the “NPQ” tag to form an encoded 
query (discussed in a following section). For instance, the query “NPQ MolWeight < 
500” can be used to search a document for all molecules having a molecular weight less 
than 500. Named-property queries can also be used within pharmacophore, branched-
fragment, and Smarts queries, as described in those sections.  
The named-property queries labeled as group features in the above list all describe more 
than a single atom. Such queries have special significance when used in the definitions of 
pharmacophore and branched-fragment keys. See those topics in the Generating Keys 
section for a description of how group features are handled in each case. Note that by 
using recursive Smarts syntax, a user can create a query that includes more than one atom 
in the definition but is not a group feature. For instance, the query “[$(c1ccccc1)]” cannot 
define a group feature since it is actually a single-atom query. In contrast, the similar 
query “c1ccccc1” is a six-atom query and therefore can define a group feature.  
Users also have the option of defining new named-property queries, using the Define 
Named Queries option on the Search menu. When a new query is defined, the query 
name is stored internally along with the default names, and can be used in an identical 
fashion. ChemTK remembers the name until the application is closed, after which time 
the query must be re-loaded by the user. To define a new query, it is first necessary to 
create a special type of query file containing the query name and its definition. The 
Create Query File option on the Search menu contains an option to save a query file 
having the appropriate syntax. The following is an example of such a query file 
(containing two queries):  
NAMEQUERY ZincBinder  
SLQ ONC=O  
$$$$  
NAMEQUERY KeyScaffold  
SLQ n1ccccc1  
$$$$  
In the first line of each query entry, the NAMEQUERY tag indicates that a new named-
property query is being defined. The subsequent name (e.g., “ZincBinder”) is the name 
by which the new query will be referenced, just as “MolWeight” is used to reference the 
molecular-weight query. The second line defines the query itself, and like all query-file 
records is in the form of an encoded query. Thus “SLQ” indicates a Smarts pattern, and 
(for example) “ONC=O” is the pattern for a hydroxamic acid group. See the subsequent 
discussion of encoded queries, and the section on File Formats, for additional 
information on these topics.  
Once an appropriate query file has been generated, it is loaded using the Load button on 
the Define named queries dialog. At this point the new queries should appear in the 
window along with the defaults. Note that a user may elect to override these default 
named-property queries. For example, the name “HAcc” could be used in the above 
NAMEQUERY entry, in which case the new definition would take precedence over the 
ChemTK default.  
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Encoded queries  
One of the principal query formats supported by ChemTK is the encoded query. This 
internal format provides users considerable flexibility in creating queries based on 
substructure, pharmacophore signature, and molecular property, with the additional 
option for Boolean logic and range specification (e.g., a molecular weight range). 
ChemTK supports the use of encoded queries in document searches and in key 
generation, and these queries serve as the format for individual records within query files. 
Each of these topics is covered in a relevant section of this Reference Guide.  
A single encoded query is constructed by writing one or more encoded-query primitives, 
separated by logical operators. The format for an encoded-query primitive is:  
QUERY_CODE QUERY_STRING SEARCH_CODE RANGE  
The individual elements, which may be separated by any type of whitespace (excluding 
newline), are discussed below.  
QUERY_CODE. This is a three-letter code that specifies the particular type of query 
that is being requested (e.g., a Smarts query). The following list provides the most 
important of the supported codes. A few additional codes, including RSQ, SGQ and 
NULL, are used internally and are not described.  
NPQ. Specifies a named-property query. This code indicates that the subsequent query 
string will be a special name recognized by ChemTK as a synonym for a molecular 
property. Recognized names include MolWeight (molecular weight), Act (activity), 
HAcc (hydrogen-bond acceptor), as well as any names defined by the user. See the earlier 
discussion of named-property queries in this section of the Reference Guide for the 
complete list of supported query names and for instructions on defining customized 
named-property queries.  
SLQ. Specifies a query based on the Smarts syntax defined by Daylight CIS, Inc. See 
www.daylight.com for a detailed tutorial on the Smarts language. Note that the SLQ code 
also permits specification of named-property queries, using the angled bracket syntax 
(<>). For instance, the string “<HAcc>~C~<HDon>” specifies a hydrogen-bond donor 
and acceptor group, separated by a single Carbon atom. See the discussion of Smarts 
queries in the Query Formats section for more detail.  
PHQ. Specifies a pharmacophore query. An example query is “HAcc.HDon.2”, which 
specifies a hydrogen-bond donor and acceptor, separated by two bonds. See the earlier 
sections (e.g., Generating Keys) for a discussion of the required syntax.  
NAQ. Specifies a numeric-attribute query. This code indicates that the subsequent query 
string will be the name of a numeric molecule attribute previously loaded by the user. For 
instance, if a user has loaded a numeric attribute named “cLogP,” he can search against 
this property using a syntax such as “NAQ cLogP > 0.5 < 3.5”. Note that molecules not 
having the requested attribute (e.g., missing values) are treated as having a value of 0.0 
when query results are derived. For more information regarding molecule attributes, see 
the section of this Reference Guide entitled Loading Molecule Activities/Attributes.  
QUERY_STRING. This is the actual query, written in a format appropriate for the 
preceding query code. Hence “MolWeight” would be an appropriate query string for the 
“NPQ” code, while “c1ccccc1” (benzene) would be an appropriate query string for the 
“SLQ” code.  
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SEARCH_CODE. (Optional). One of three single-letter codes to indicate whether to 
perform a full match (“F”), single match (“S”), or unique match (“U”). For instance, if a 
benzene query is used to search a naphthalene molecule, a full match will return 24 hits, a 
unique match two hits, and a single match one hit. Note that if no code is provided, the 
default is to perform a full match.  
RANGE. (Optional). A range specification applied to the match result. This range must 
take the form of either one or two symbol/value pairs, where the symbol is either “>“, 
“<“, or “=“. For example, “= 3” indicates a result equal to 3, and “> 1 < 4” indicates a 
result that is greater than 1 and less than 4. The match-result value depends on the type of 
match requested. For example, “NPQ MolWeight” returns an actual weight value, while 
“SLQ c1ccccc1” returns the number of benzene matches. This convention is identical to 
that of key-value calculations; see the relevant discussion in the Generating Keys section 
for more detail.  
The following are examples of valid encoded-query primitives:  
NPQ MolWeight < 500  
NPQ HAcc > 2 < 11  
SLQ c1ccccc1 U = 2  
SLQ <HDon>~<HAcc> S  
PHQ HAcc.HAcc.HAcc.2.2.2  
50  
The first query specifies molecules having a molecular weight less than 500. The second 
query specifies molecules having between 3 and 10 hydrogen-bond acceptor groups. The 
third query specifies molecules having two distinct benzene rings. Note that here the “U” 
specifies a unique match, without which a large number of redundant matches would be 
returned. The forth query specifies all molecules containing at least one example of a 
hydrogen-bond acceptor connected to a hydrogen-bond donor. The “S” ensures that at 
most a single match will be identified in each molecule. The fifth query specifies all 
molecules containing the particular pharmacophore. 
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Appendix D: Chemical Computing Group (CCG) QSAR descriptors 

The CGC QSAR descriptors are partitioned into classes:  

• 2D. 2D descriptors only use the atoms and connection information of the 
molecule for the calculation. 3D coordinates and individual conformations are not 
considered.  

• i3D. Internal 3D descriptors use 3D coordinate information about each molecule; 
however, they are invariant to rotations and translations of the conformation.  

• x3D. External 3D descriptors also use 3D coordinate information but also require 
an absolute frame of reference (e.g., molecules docked into the same receptor).   

Details on the CGC features are found at: http://www.chemcomp.com/. 

Appendix E: Matlab code to filter MARTI data 
 
function X=nreged_recover(Xold, data_dir, data_name) 
  
cidx=load([data_dir '/' upper(data_name) '/' data_name '_feat.calib' 
]); 
cal0=load([data_dir '/' upper(data_name) '/' data_name '_feat.calval' 
]); 
  
view=0; 
[p, n]=size(Xold); 
X=zeros(p,n); 
for k=1:p 
    X(k,:)=nreged_filter(Xold(k,:), view, cidx, cal0); 
end 

 
function XF=nreged_filter(X, view, cidx, cal0) 
%XF=nreged_filter(X) 
% Filters a 2d pattern 
  
if nargin<2, view=0; end 
if nargin<3, cidx=[]; cal0=1; end 
  
n=length(X); 
t=sqrt(n); 
val=sort(X); 
% Compute background 
background=median(val(1:50)); 
% Reshape as square 
XP=reshape(X, t, t); 
if view, cmat_display(XP); end 
  
% add border 
XB=zeros(size(XP)+6); 
XB([1:t]+3, [1:t]+3)=XP; 
XB([t-2:t]+6,[1:3])=(XP(t-1,1)+XP(t-2,2))/2 *ones(3); 
XB([1:3],[1:3])=(XP(1,1)+XP(2,2))/2 *ones(3); 
XB([1:3], [t-2:t]+6)=(XP(1, t-1)+XP(2, t-2))/2 *ones(3); 
XB([t-2:t]+6,[t-2:t]+6)=(XP(t-1,t-1)+XP(t-2,t-2))/2 *ones(3); 
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XB([1:t]+3, 1:3)=(XP(:,[1 1 1])+XP(:,[2 2 2]))/2; 
XB([1:t]+3, [t-2:t]+6)=(XP(:,[t-1, t-1, t-1])+XP(:,[t t t]))/2; 
XB(1:3, [1:t]+3)=(XP([1 1 1],:)+XP([2 2 2],:))/2; 
XB([t-2:t]+6, [1:t]+3)=(XP([t-1, t-1, t-1],:)+XP([t t t],:))/2; 
if view, cmat_display(XB); end 
  
% Remove the outliers 
XBN=XB; 
st=std(X); 
tt=size(XB,1); 
for i=1:tt 
    for j=1:tt 
        I=[i-1 i i+1]; 
        gidx=find(I>0 & I<tt); 
        I=I(gidx); 
        J=[j-1 j j+1]; 
        gidx=find(J>0 & J<tt); 
        J=J(gidx);   
        m=-XB(i,j); 
        for ii=I 
            for jj=J 
               m=m+XB(ii,jj); 
            end 
        end 
        m=m/9; 
        if XB(i,j)>m+st | XB(i,j)<m-st 
            XBN(i,j)=m; 
        end 
    end 
end 
if view, cmat_display(XBN); end                        
                        
XB=XBN; 
  
ker=[1 4 6 4 1]'*[1 4 6 4 1]; 
ker=ker./sum(sum(ker)); 
XBS=conv2(XB, ker, 'same'); 
XPS=XBS(4:t+3,4:t+3); 
if view, cmat_display(XPS); end 
if isempty(cidx) 
    XC=XP-XPS+background; 
else 
    XC=XP-XPS; 
end 
if view, cmat_display(XC); end 
  
XF=XC(:)'; 
if ~isempty(cidx) 
    cal=mean(XF(cidx)); 
    XF=XF-cal+cal0; 
end 
 

 


