#### Baseline Models using Kernel Methods

#### Gavin Cawley & Nicola L. C. Talbot

School of Computing Sciences University of East Anglia Norwich, United Kingdom gcc@cmp.uea.ac.uk

Friday 17<sup>th</sup> August 2007

# Introduction

- Aim: To produce competitive agnostic track baseline models.
- Method: Least-squares support vector machine.
  - Simple to implement.
  - Reasonably efficient for small datasets.
  - Model selection via leave-one-out cross-validation.
  - Performed well on the previous challenge.
- Issues:
  - Minimise Balanced Error Rate (BER) on the test set.

- Many datasets are high dimensional.
- SYLVA has too many training patterns.
- The validation sets are very small.
- Limited computing power available.
- Had a go at the prior knowledge track as well.

# Bias & Variance in Model Selection

- Choose hyper-parameters to minimise estimate of generalisation error.
- The error of an estimator can be decomposed into:
  - Bias represents the degree to which the estimator is systematically different to the true value
  - Variance represents the sensitivity of the estimator to the sampling of the data.
- Bias is relatively unimportant.
  - Just need the minimum in the right place.
- Variance permits over-fitting in model selection.
  - Model selection criterion gives a biased estimate of generalisation performance.
  - Problem gets worse as the number of hyper-parameters increases (e.g. feature scaling, ARD).

## Bias & Variance in Performance Estimation

- Both bias and variance are important.
- Most re-sampling approaches have a low bias.
  - Leave-one-out cross-validation (Luntz 1969).
- Variance is often more of an issue:
  - Leave-one-out has a high variance (Kohavi 1995).
- Validation set is too small to be a reliable indicator.
  - ▶ e.g. HIVA validation set has 14 +ve and 370 -ve examples.
- Should not re-use model selection criterion.
  - Over-fitting introduces an optimistic bias.
- Model selection is an integral part of model fitting.
  - Should be performed independently in each fold of the cross-validation procedure to avoid *selection bias*.

### Least-Squares Support Vector Machine

▶ Data :  $\mathcal{D} = \{(\mathbf{x}_i, t_i)\}, \ \mathbf{x}_i \in \mathcal{X} \subset \mathbb{R}^d, \ t_i \in \{-1, +1\}.$ 

• Model : 
$$f(\mathbf{x}) = \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}) + b$$
,

Regularised least-squares loss function:

$$\mathcal{L} = \frac{1}{2} \|\mathbf{w}\|^2 + \frac{1}{2\mu\ell} \sum_{i=1}^{\ell} \left[t_i - \mathbf{w} \cdot \phi(\mathbf{x}_i) - b\right]^2.$$

$$\mathcal{K}(\mathbf{x},\mathbf{x}') = \phi(\mathbf{x}) \cdot \phi(\mathbf{x}') \implies f(\mathbf{x}_i) = \sum_{i=1}^{\ell} \alpha_i \mathcal{K}(\mathbf{x}_i,\mathbf{x}) + b.$$

System of linear equations (solve via Cholesky factorisation)

$$\begin{bmatrix} \mathbf{K} + \mu \ell \mathbf{I} & \mathbf{1} \\ \mathbf{1}^T & \mathbf{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{\alpha} \\ \boldsymbol{b} \end{bmatrix} = \begin{bmatrix} \mathbf{t} \\ \mathbf{0} \end{bmatrix}$$

Simple and efficient for small(ish) datasets.

#### Kernel Functions

- Kernel models rely on a good choice of kernel function.
- Linear :  $\mathcal{K}(\mathbf{x}, \mathbf{x}') = \mathbf{x} \cdot \mathbf{x}'$ .
- Polynomial :  $\mathcal{K}(\mathbf{x}, \mathbf{x}') = (\mathbf{x} \cdot \mathbf{x}' + c)^d$ .
- Boolean :  $\mathcal{K}(\mathbf{x}, \mathbf{x}') = (1 + \eta)^{\mathbf{x} \cdot \mathbf{x}'}$ .
- Radial Basis Function :  $\mathcal{K}(\mathbf{x}, \mathbf{x}') = \exp \{-\eta \|\mathbf{x} \mathbf{x}'\|^2\}.$
- Must also optimise kernel parameters,  $c, d, \eta$  etc.
- Also try normalised kernels:

$$\widehat{\mathcal{K}}(\mathbf{x}, \mathbf{x}') = \frac{\mathcal{K}(\mathbf{x}, \mathbf{x}')}{\sqrt{\mathcal{K}(\mathbf{x}, \mathbf{x})\mathcal{K}(\mathbf{x}', \mathbf{x}')}}$$

► N.B. Normalised Boolean kernel ≡ RBF kernel.

## Virtual Leave-One-Out Cross-Validation

Can perform leave-one-out cross-validation in closed form.

• Let 
$$y_i = f(\mathbf{x}_i)$$
 and  $\mathbf{C} = \begin{bmatrix} \mathbf{K} + \mu \ell \mathbf{I} & \mathbf{I} \\ \mathbf{I}^T & \mathbf{0} \end{bmatrix}$ .

It can be shown that:

$$r_i^{(-i)} = t_i - y_i^{(-i)} = \frac{\alpha_i}{\mathbf{C}_{ii}^{-1}}$$

- Uses information available as a by-product of training.
- Perform model selection by minimising PRESS

$$PRESS(\boldsymbol{\theta}) = \frac{1}{\ell} \sum_{i=1}^{\ell} \left[ \frac{\alpha_i}{\mathbf{C}_{ii}^{-1}} \right]^2$$

Use e.g. Nelder-Mead simplex or scaled conjugate gradients.

# Basic Strategy

- Perform model selection using virtual leave-one-out cross-validation.
  - Weighted training and/or weighted model selection criteria.
  - Different kernel functions and selection criterion.
  - Nelder-Mead simplex optimisation.
- ▶ Train final models on training + validation sets (agnostic).
- Set threshold for estimating BER:
  - Set threshold to minimise the leave-one-out BER.
- Choose best combination of factors by minimising LOO BER.
- Performance estimation:
  - 100 random training/test splits (agnostic).
  - 10-fold cross-validation (prior knowledge).
  - Perform model selection independently in each fold.

### Results: ADA

- Prior knowledge track encoding quite good already.
- Box-Tidwell transformation of age, capital-gain & capital loss, e.g.

$$x_i^{\text{age}} = \sqrt[10]{x_i^{\text{age}}}$$

| model | kernel               | cross-va            | lidation            | validation set |        |
|-------|----------------------|---------------------|---------------------|----------------|--------|
| moder |                      | BER                 | AUC                 | BER            | AUC    |
| KRR   | linear               | 0.2004              | 0.8838              | 0.2206         | 0.8644 |
| KRR   | poly $(p = 2)$       | 0.1909              | 0.8948              | 0.2143         | 0.8745 |
| KRR   | poly ( <i>p</i> = 3) | 0.1920              | 0.8941              | 0.2094         | 0.8727 |
| KRR   | RBF                  | 0.1949              | 0.8941              | 0.2095         | 0.8729 |
| KRR   | ARD                  | 0.1653 <sup>†</sup> | 0.9180 <sup>†</sup> | 0.1740         | 0.8910 |

<sup>†</sup> biased leave-one-out estimate from the model selection process.

## Results : GINA - Agnostic Track

- Optical character recognition.
- Many distractors:
  - ▶ Features represent bit-map for two adjacent digits.
  - Target is one if second digit is even.
- Normalise input features.

| model | kernel               | 100-fold            | validation                 | validation set |        |
|-------|----------------------|---------------------|----------------------------|----------------|--------|
|       |                      | BER                 | AUC                        | BER            | AUC    |
| KRR   | linear               | 0.1324              | 0.9364                     | 0.1273         | 0.9461 |
| KRR   | poly $(p = 2)$       | 0.0578              | 0.9848                     | 0.0317         | 0.9940 |
| KRR   | poly ( <i>p</i> = 3) | 0.0532              | 0.9870                     | 0.0285         | 0.9955 |
| KRR   | RBF                  | 0.0571              | 0.9853                     | 0.0442         | 0.9955 |
| KRR   | PCA-ARD              | 0.0297 <sup>†</sup> | <b>0.9950</b> <sup>†</sup> | 0.0253         | 0.9968 |

<sup>†</sup> biased leave-one-out estimate from the model selection process.

### Results: GINA - Prior Knowledge Track

Use RBF kernel with tunable Gaussian receptive fields.



- ► Target is a composite concept {1,3,5,7,9} vs {0,2,4,6,8}
  - Train 25 models to distinguish between odd-even pairs.
  - Train model to combine the output of the experts.
  - Train combiner with LOO output of the experts.

## Results: GINA - Prior Knowledge Track

- Getting rid of the distractors seems to help.
- MRF and hierarchical models make less difference.

| model   | kornol               | cross va | lidation | validation set |        |  |
|---------|----------------------|----------|----------|----------------|--------|--|
| model   | Kerner               | BER      | AUC      | BER            | AUC    |  |
| KRR     | linear               | 0.1297   | 0.9416   | 0.1270         | 0.9525 |  |
| KRR     | poly ( <i>p</i> = 2) | 0.0365   | 0.9914   | 0.0158         | 0.9998 |  |
| KRR     | poly ( <i>p</i> = 3) | 0.0310   | 0.9938   | 0.0095         | 0.9999 |  |
| KRR     | poly ( <i>p</i> = 4) | 0.0284   | 0.9948   | 0.0064         | 0.9999 |  |
| KRR     | poly ( <i>p</i> = 5) | 0.0279   | 0.9949   | 0.0064         | 0.9999 |  |
| KRR     | poly ( <i>p</i> = 6) | 0.0256   | 0.9949   | 0.0126         | 0.9999 |  |
| KRR     | RBF                  | 0.0290   | 0.9945   | 0.0095         | 0.9998 |  |
| KRR     | MRF                  | 0.0315   | 0.9948   | 0.0157         | 0.9996 |  |
| KRR+KRR | RBF+RBF              | 0.0263   | 0.9956   | 0.0128         | 0.9996 |  |
| KRR+KRR | RBF+ARD              | 0.0253   | 0.9959   | 0.0192         | 0.9994 |  |

## Results: HIVA

#### Agnostic track

| model | kornol         | 100-fold | validation | validation set |        |  |
|-------|----------------|----------|------------|----------------|--------|--|
|       | Kerner         | BER      | AUC        | BER            | AUC    |  |
| KRR   | linear         | 0.2547   | 0.8071     | 0.3311         | 0.6990 |  |
| KRR   | poly $(d = 2)$ | 0.2444   | 0.7991     | 0.2535         | 0.7253 |  |
| KRR   | poly $(d = 3)$ | 0.2523   | 0.8051     | 0.2467         | 0.7486 |  |
| KRR   | RBF            | 0.2495   | 0.8092     | 0.2819         | 0.7604 |  |

Prior knowledge track - ChemTK chemical fingerprint

| model | kernel               | 100-fold | validation | validation set |        |
|-------|----------------------|----------|------------|----------------|--------|
|       |                      | BER      | AUC        | BER            | AUC    |
| KRR   | linear               | 0.2957   | 0.7988     | 0.2548         | 0.7486 |
| KRR   | poly $(d = 2)$       | 0.2914   | 0.7411     | 0.2476         | 0.6786 |
| KRR   | poly $(d = 3)$       | 0.2888   | 0.7406     | 0.2629         | 0.7741 |
| KRR   | poly ( <i>d</i> = 4) | 0.2989   | 0.7365     | 0.3444         | 0.7384 |
| KRR   | RBF                  | 0.4889   | 0.4573     | 0.5000         | 0.4519 |

◆□> <個> <=> <=> <=> <=> <</p>

## Results: NOVA - Agnostic Track

- Text classification problem
  - Distinguish between usenet groups by content.
  - Short words deleted.
  - 2000 very common words deleted.
  - Words truncated to first seven letters.
  - ▶ 16,969 features far more features than patterns.

| model | kernel         | 100-fold | validation | validation set |        |  |
|-------|----------------|----------|------------|----------------|--------|--|
| moder |                | BER      | AUC        | BER            | AUC    |  |
| KRR   | linear         | 0.0491   | 0.9878     | 0.0440         | 0.9968 |  |
| KRR   | poly $(d = 2)$ | 0.0550   | 0.9862     | 0.0640         | 0.9955 |  |
| KRR   | poly $(d = 3)$ | 0.0569   | 0.9854     | 0.0044         | 0.9947 |  |
| KRR   | RBF            | 0.0635   | 0.9828     | 0.0480         | 0.9942 |  |

### Results: NOVA - Prior Knowledge Track

- Stemming remove suffixes and affixes to leave root.
  - ► E.g. "fisher", "fishing" & "fished" become "fish"
- ► Spell checking USENET messages often posted in haste.
- Term frequency-inverse document frequency (TF-IDF) coding scheme

$$tf = \frac{n_i}{\sum_k n_k}, \qquad \& \qquad idf = \log\left\{\frac{|D|}{|d_k \supset t_i|}\right\}$$

| model | pre-       | cross validation |        | validation set |        |
|-------|------------|------------------|--------|----------------|--------|
| model | processing | BER              | AUC    | BER            | AUC    |
| KRR   | none       | 0.0432           | 0.9894 | 0.0540         | 0.9886 |
| KRR   | stemming   | 0.0504           | 0.9890 | 0.0360         | 0.9878 |
| KRR   | spell+stem | 0.0626           | 0.9817 | 0.0540         | 0.9782 |

### Results: SYLVA - Agnostic Track

- Based on Forest Cover benchmark.
  - Distinguish Ponderosa Pine from all other species.
- Many distractors!
- Two features can be used to pre-classify the data.
  - Remaining "awkward" patterns classified via KRR.

| model | kornol               | 100-fold | validation | validation set |        |
|-------|----------------------|----------|------------|----------------|--------|
| moder | Kerner               | BER      | AUC        | BER            | AUC    |
| KRR   | linear               | 0.0149   | 0.9982     | 0.0069         | 0.9980 |
| KRR   | poly $(d = 2)$       | 0.0077   | 0.9991     | 0.0045         | 0.0990 |
| KRR   | poly ( <i>d</i> = 3) | 0.0078   | 0.9990     | 0.0045         | 0.9991 |
| KRR   | RBF                  | 0.0079   | 0.9990     | 0.0049         | 0.9991 |

## Results: SYLVA - Prior Knowledge Track

- ► Separate the two sub-patterns (26,172 records).
- No ponderosa pine in Rahwa or Neotah.
- Only found in 13 of the 40 soil types.
- ► This leaves only 1,335 *difficult* patterns.
- validation set BER of 0.0041 & an AUC of 0.9992.

| Cover Type        | Rawah | Neota | Comanche | Cache la |
|-------------------|-------|-------|----------|----------|
| Core: Type        | Ranan | Heota | Peak     | Poudre   |
| Spruce-Fir        | 4779  | 796   | 3919     | 0        |
| Lodgepole Pine    | 6635  | 410   | 5609     | 135      |
| Ponderosa Pine    | 0     | 0     | 663      | 947      |
| Cottonwood/Willow | 0     | 0     | 0        | 137      |
| Aspen             | 174   | 0     | 245      | 0        |
| Douglas-Fir       | 0     | 0     | 373      | 453      |
| Krummholz         | 228   | 104   | 565      | 0        |
| Total             | 11816 | 1310  | 11374    | 1672     |

# Summary

- Don't re-use the model selection criteria for performance estimation.
- Model tuning/selection:
  - Computationally expensive need something cheap!
  - Virtual leave-one-out cross-validation.
- Performance estimation:
  - Only performed once cost less important.
  - k-fold cross-validation.
  - Low bias and low variance are both desirable.
  - Use as many iterations as are feasible.
  - Perform model selection independently in each fold.

- Prior knowledge track solutions only slightly better.
  - Is that a good thing?