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Why LogitBoost with trees?

Why boosting?
Successful in various real-world applications.
Topic of my PhD Thesis.

Why LogitBoost?
“Statistical version of boosting”.

Why trees?
Easy to control the degree of interaction.
No transformation of variables necessary.
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Terminology

Training data: (x1, y1), . . . , (xn, yn), xi ∈ Rp, yi ∈ {0, 1}.

Logistic framework:
Conditional probabilities: p(x) = P[Y = 1|X = x ] .
“Predictor”: F : Rp → R.
Link: p(x) = exp(F (x))

1+exp(F (x)) and F (x) = log
(

p(x)
1−p(x)

)
.

Classification rule:
Classify a new observation as +1 if p(xnew ) > cut-off.
The cut-off is the proportion of class +1 in the data
(because the balanced error rate (BER) is used).
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The LogitBoost algorithm in words

LogitBoost (Friedman, Hastie, Tibshirani (2000)) uses Newton
steps for fitting a logistic model by maximum binomial likelihood.
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The LogitBoost algorithm in code

1 Start with F (0)(xi) = 0 and p(xi) = 1
2 , i = 1, . . . , n.

2 Repeat for m = 1, . . . , M:
1 Compute the weights and working response

wi = p(xi)(1− p(xi)), zi =
yi − p(xi)

p(xi)(1− p(xi))
.

2 Fit the function f (m)(x), using the tree-based learner, by a
weighted least-squares regression of zi to xi using weights
wi .

3 Update F (m)(xi) = F (m−1)(xi) + νf (m)(xi), 0 < ν ≤ 1
and p(xi) = exp(F (m)(xi ))

1+exp(F (m)(xi ))
.
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The learner

The learner (fitting method) is a regression tree of prefixed
depth: 1, 2, 3, 4, or 5 (in each iteration, a tree of the same
depth is fitted).

The tree depth and the number of iterations M are chosen by
10-fold cross-validation (CV) to minimize the balanced error
rate (BER).
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Shrinkage

The ν is the so-called shrinkage factor.
The natural value is 1, but smaller values are often a better
choice.
Start with ν = 1. If the CV BER curve is too rough, reduce
ν by a factor of approximately 3 and rerun LogitBoost.
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Remarks and extensions

PCA for Nova. First 400 principal components are taken for
LogitBoost.

Further modifications (challenge submissions 2 - 4):
Variable pre-selection by Wilcoxon/Fisher exact test.
Variables with a p-value above 0.1 are dropped.
Predicted probabilities of LogitBoost with and without
variable pre-selection averaged.
Intercept adaptation: Add the same constant to all F (xi) so
that the average of the resulting probabilities p(xi) is
exactly the proportion of class +1 in the data.
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BER guess

The BER guess is the CV BER at the stopping iteration.
Additional computation: 0.
Is too optimistic, because the number of iterations is
explicitly chosen to minimize the CV BER.
But the estimation of generalisation BER by CV is biased
upward.
→ The two effects could cancel each other out.
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Results

Plain LogitBoost (not the winning submission):

Dataset Tree ν No. of CV BER = BER on
depth iterations BER guess test set

Ada 1 0.3 1043 0.1565 0.1712
Gina 5 0.3 741 0.0415 0.0385
Hiva 2 0.03 353 0.2756 0.2888
Nova 2 0.1 294 0.0506 0.0491
Sylva 1 0.3 273 0.0058 0.0064

Average 0.1060 0.1108
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Summary

LogitBoost with trees is very competitive.
Use only large trees if really necessary.
Use shrinkage (e.g. ν = 0.1).
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