Motivation LogitBoost with trees Results Summary

# LogitBoost with Trees Applied to the WCCI 2006 Performance Prediction Challenge Datasets

#### Roman Lutz

Seminar für Statistik, ETH Zürich, Switzerland

18. July 2006



## Overview

- Motivation
- 2 LogitBoost with trees
  - The logistic framework
  - The LogitBoost algorithm
  - The learner
  - Shrinkage
  - Remarks and extensions
- Results
- Summary



## Why boosting?

- Successful in various real-world applications.
- Topic of my PhD Thesis.

## Why LogitBoost?

"Statistical version of boosting".

- Easy to control the degree of interaction
- No transformation of variables necessary.



## Why boosting?

- Successful in various real-world applications.
- Topic of my PhD Thesis.

#### Why LogitBoost?

"Statistical version of boosting".

- Easy to control the degree of interaction
- No transformation of variables necessary.



## Why boosting?

- Successful in various real-world applications.
- Topic of my PhD Thesis.

#### Why LogitBoost?

"Statistical version of boosting".

- Easy to control the degree of interaction
- No transformation of variables necessary.



## Why boosting?

- Successful in various real-world applications.
- Topic of my PhD Thesis.

#### Why LogitBoost?

"Statistical version of boosting".

- Easy to control the degree of interaction
- No transformation of variables necessary



#### Why boosting?

- Successful in various real-world applications.
- Topic of my PhD Thesis.

#### Why LogitBoost?

"Statistical version of boosting".

- Easy to control the degree of interaction.
- No transformation of variables necessary.



#### Why boosting?

- Successful in various real-world applications.
- Topic of my PhD Thesis.

#### Why LogitBoost?

"Statistical version of boosting".

- Easy to control the degree of interaction.
- No transformation of variables necessary.



#### Why boosting?

- Successful in various real-world applications.
- Topic of my PhD Thesis.

#### Why LogitBoost?

"Statistical version of boosting".

- Easy to control the degree of interaction.
- No transformation of variables necessary.



## Why boosting?

- Successful in various real-world applications.
- Topic of my PhD Thesis.

#### Why LogitBoost?

"Statistical version of boosting".

- Easy to control the degree of interaction.
- No transformation of variables necessary.



## Terminology

Training data:  $(x_1, y_1), \dots, (x_n, y_n), \quad x_i \in \mathbb{R}^p, \quad y_i \in \{0, 1\}.$ 

#### Logistic framework:

- Conditional probabilities: p(x) = P[Y = 1 | X = x].
- "Predictor":  $F : \mathbb{R}^p \to \mathbb{R}$ .
- Link:  $p(x) = \frac{\exp(F(x))}{1 + \exp(F(x))}$  and  $F(x) = \log\left(\frac{p(x)}{1 p(x)}\right)$ .

#### Classification rule:

- Classify a new observation as +1 if  $p(x_{new}) > \text{cut-off}$ .
- The cut-off is the proportion of class +1 in the data (because the balanced error rate (BER) is used).



Motivation LogitBoost with trees Results Summary The logistic framework
The LogitBoost algorithm
The learner
Shrinkage
Remarks and extensions

# The LogitBoost algorithm in words

LogitBoost (Friedman, Hastie, Tibshirani (2000)) uses Newton steps for fitting a logistic model by maximum binomial likelihood.



# The LogitBoost algorithm in code

- **1** Start with  $F^{(0)}(x_i) = 0$  and  $p(x_i) = \frac{1}{2}$ , i = 1, ..., n.
- 2 Repeat for m = 1, ..., M:
  - Compute the weights and working response

$$w_i = p(x_i)(1 - p(x_i)), \quad z_i = \frac{y_i - p(x_i)}{p(x_i)(1 - p(x_i))}.$$

- 2 Fit the function  $f^{(m)}(x)$ , using the tree-based learner, by a weighted least-squares regression of  $z_i$  to  $x_i$  using weights  $w_i$ .
- **3** Update  $F^{(m)}(x_i) = F^{(m-1)}(x_i) + \nu f^{(m)}(x_i)$ ,  $0 < \nu \le 1$  and  $p(x_i) = \frac{\exp(F^{(m)}(x_i))}{1 + \exp(F^{(m)}(x_i))}$ .



The logistic framework
The LogitBoost algorithm
The learner
Shrinkage
Remarks and extensions

## The learner

The learner (fitting method) is a regression tree of prefixed depth: 1, 2, 3, 4, or 5 (in each iteration, a tree of the same depth is fitted).

The tree depth and the number of iterations M are chosen by 10-fold cross-validation (CV) to minimize the balanced error rate (BER).

Tree depth = 1



Tree depth = 2



The logistic framework
The LogitBoost algorithm
The learner
Shrinkage
Remarks and extensions

# Shrinkage

- The  $\nu$  is the so-called shrinkage factor.
- The natural value is 1, but smaller values are often a better choice.
- Start with  $\nu=$  1. If the CV BER curve is too rough, reduce  $\nu$  by a factor of approximately 3 and rerun LogitBoost.

Motivation LogitBoost with trees Results Summary The logistic framework
The LogitBoost algorithm
The learner
Shrinkage
Remarks and extensions



## Remarks and extensions

PCA for Nova. First 400 principal components are taken for LogitBoost.

Further modifications (challenge submissions 2 - 4):

- Variable pre-selection by Wilcoxon/Fisher exact test.
   Variables with a p-value above 0.1 are dropped.
- Predicted probabilities of LogitBoost with and without variable pre-selection averaged.
- Intercept adaptation: Add the same constant to all  $F(x_i)$  so that the average of the resulting probabilities  $p(x_i)$  is exactly the proportion of class +1 in the data.



## BER guess

The BER guess is the CV BER at the stopping iteration.

- Additional computation: 0.
- Is too optimistic, because the number of iterations is explicitly chosen to minimize the CV BER.
- But the estimation of generalisation BER by CV is biased upward.
- → The two effects could cancel each other out.



## Results

## Plain LogitBoost (not the winning submission):

| Dataset | Tree  | ν    | No. of     | CV BER =  | BER on   |
|---------|-------|------|------------|-----------|----------|
|         | depth |      | iterations | BER guess | test set |
| Ada     | 1     | 0.3  | 1043       | 0.1565    | 0.1712   |
| Gina    | 5     | 0.3  | 741        | 0.0415    | 0.0385   |
| Hiva    | 2     | 0.03 | 353        | 0.2756    | 0.2888   |
| Nova    | 2     | 0.1  | 294        | 0.0506    | 0.0491   |
| Sylva   | 1     | 0.3  | 273        | 0.0058    | 0.0064   |
| Average |       |      |            | 0.1060    | 0.1108   |

## Summary

- LogitBoost with trees is very competitive.
- Use only large trees if really necessary.
- Use shrinkage (e.g.  $\nu = 0.1$ ).