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Why Information Theory?

Variables or features can be understood as a “noisy channel” that
conveys information about the message

The aim would be to select or to construct features that provide as much
information as possible about the “message”

By using information theory, variable selection and feature construction
can be viewed as coding and distortion problems

Read Shannon!
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Entropy

Continuous random variable X ∈ Rd representing available variables or
observations and a discrete-valued random variable Y representing the
class labels

The uncertainty or entropy in drawing one sample of Y at random
according to Shannon’s definition:

H(Y ) = Ey [log2
1

p(y)
] = −

X
y

p(y) log2(p(y)). (1)

(Differential) entropy can also be written for a continuous variable as

H(X ) = Ex [log2
1

p(x)
] = −

Z
x

p(x) log2(p(x))dx . (2)
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Conditional Entropy, Mutual Information

After having made an observation of a variable vector x , the uncertainty
of the class identity is defined in terms of the conditional density p(y |x):

H(Y |X ) =

Z
x

p(x)

 
−
X

y

p(y |x) log2(p(y |x))

!
dx . (3)

Reduction in class uncertainty after having observed the variable vector
x is called the mutual information between X and Y

I(Y , X ) = H(Y )− H(Y |X ) (4)

=
X

y

Z
x

p(y , x) log2
p(y , x)

p(y)p(x)
dx (5)

Same as Kullback-Leibler divergence between the joint density p(y , x)
and its factored form p(y)p(x).
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Conditional Entropy, Mutual Information

H(X ) and H(Y ) are each represented
by a circle

Joint entropy H(X , Y ) consists of the
union of the circles

Mutual information I(X , Y ) is the
intersection of the circles

H(X , Y ) = H(X ) + H(Y )− I(X ; Y )

Illustration of entropies

H(X)

H(Y)

H(X|Y)

H(Y|X)

I(X;Y)H(X,Y)
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Channel Coding

Shannon:

Channel with input X and output Y ′

Rate of transmission of information R = H(X )− H(X |Y ′) = I(X , Y ′)

The capacity of this particular (fixed) channel is defined as the maximum
rate over all possible input distributions, C = maxp(X) R

Maximizing the rate = choosing an input distribution that matches the
channel (under some constraints, such as fixed power or efficiency of
the channel)
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Analogy to variable selection and feature construction

Real source Y is now represented (encoded) as the available variables
X

Now the channel input distribution X is fixed

Modify how the input is communicated to the receiver by the channel
either by selecting a subset of available variables or by constructing new
features Φ = g(X , θ) where g denotes some selection or construction
function, and θ represents some tunable parameters

In Shannon’s case θ was fixed but X was subject to change

“channel” capacity can be represented as C = maxθ R subject to some
constraints, such as keeping the dimensionality of the new feature
representation as a small constant
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Rate-distortion theorem

Finding the simplest representation (in terms of bits/sec) to a continuous
source signal within a given tolerable upper limit of distortion

Would not waste the channel capacity

Solution for a given distortion D is the representation Φ that minimizes
the rate R(D) = minE(d)≤D I(X , Φ)

Combination of the two results in a loss function

L(p(φ|x)) = I(X , Φ)− βI(Φ, Y ). (6)

that does not require setting constraints to the dimensionality of the
representation, rather it emerges as the solution

The representation Φ can be seen as a bottleneck that extracts relevant
information about Y from X (Tishby 1999)
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Estimating Mutual Information

Between two variables use non-parametric histogram approach (Battiti
94), but in higher dimensions any amount of data is too sparse to bin.

Parametric class density estimates (such as Gaussians) and plug them
into the definition of MI
MI is a difference between two entropies: Entropy estimation!

The simplest way is the maximum likelihood estimate based on histograms
known to have a negative bias that can be corrected to some extent by the
so-called Miller-Madow bias correction. This consists of adding (m̂ − 1)/2N
to the estimate, where m̂ denotes an estimate of the number of bins with
nonzero probability
this cannot be done in many practical cases, such as when the number of
bins is close to the number of observations (Paninski 93)
Bayesian techniques can be used if some information about the underlying
probability density function is available in terms of a prior (Wolpert & Wolf
95; Zaffalon 02)
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Measures other than Shannon’s

Shannon derived the entropy measure axiomatically and showed that no
other measure would fulfill all the axioms

If we want to find a distribution that minimizes/maximizes the entropy or
divergence, the axioms used in deriving the measure can be relaxed and
still the result of the optimization is the same distribution (Kapur, 1994)

One example is the Renyi entropy, which is defined for a discrete
variable Y and for a continuous variable X as

Hα(Y ) =
1

1− α
log2

X
y

p(y)α; Hα(X ) =
1

1− α
log2

Z
x

p(x)αdx ,

(7)
where α > 0, α 6= 1, and limα→1 Hα = H

Quadratic Renyi entropy is straightforward to estimate from a set of
samples using the Parzen window approach
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Non-Parametric Estimation of Renyi Entropy

Make use of the fact, that a convolution of two Gaussians is a Gaussian, that
is, Z

y
G(y − ai ,Σ1)G(y − aj ,Σ2)dy = G(ai − aj ,Σ1 + Σ2). (8)

Renyi entropy reduces to samplewise interactions when combined with
Parzen density estimation (Principe, Fisher, and Xu, 2000).

HR(Y ) = − log
Z

y
p(y)2dy

= − log
1

N2

Z
y

0@ NX
k=1

NX
j=1

G(y − yk , σ
2I)G(y − y j , σ

2I)

1A dy

= − log
1

N2

NX
k=1

NX
j=1

G(yk − y j , 2σ2I). (9)
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Divergence Measures

Kullback-Leibler divergence

K (f , g) =

Z
x

f (x) log
f (x)

g(x)
dx (10)

Variational distance (Based on the f-divergence family)

V (f , g) =

Z
x
|f (x)− g(x)|dx . (11)

Quadratic divergence

D(f , g) =

Z
x
(f (x)− g(x))2dx , (12)

Pinsker’s inequality gives a lower bound on K (f , g) ≥ 1
2 V (f , g)2 . Since

f (x) and g(x) are probability density functions, both are between zero
and one, and |f (x)− g(x)| ≥ (f (x)− g(x))2, and thus V (f , g) ≥ D(f , g).
Maximizing D(f , g) thus maximizes a lower bound to K (f , g).
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Class Separability Measures

1 Sums of distances between data points of different classes.
2 Nonlinear functions of the distances or sums of the distances.
3 Probabilistic measures based on class conditional densities.

These measures may make an approximation to class conditional densities
followed by some distance measure between densities (Battacharyya
distance or divergence)
A Gaussian assumption usually needs to be made about the
class-conditional densities to make numerical optimization tractable.
Equal class covariance assumption, although restrictive, leads to the well
known Linear Discriminant Analysis (LDA), which has an analytic solution.
Some measures allow non-parametric estimation of the class conditional
densities.

4 The Bayes error
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Relation of The Bayes Error to Mutual Information

The Bayes risk using 0/1-loss for classification can be written as the
Bayes error:

ebayes(X ) = Ex [Pr(y 6= ŷ)] =

Z
x

p(x)

„
1−max

i
(p(yi |x))

«
dx , (13)

An upper bound on the Bayes error (Hellman, 1970; Feder 1990)

ebayes(X ) ≤ 1
2

H(Y |X ) =
1
2

(H(Y )− I(Y , X )) (14)

A lower bound on the error also involving conditional entropy or mutual
information is given by Fano’s (1961) inequality

ebayes(X ) ≥ 1− I(Y , X ) + log 2
log(|Y |) , (15)

where |Y | refers to the cardinality of Y .
Both bounds are minimized when the mutual information between Y and
X is maximized, or when H(Y |X ) is minimized.
The bounds are relatively tight, in the sense that both inequalities can be
obtained with equality
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Pairwise MI in variable selection

MIFS

1: Set X̂ = argmaxXi
I(Y , Xi);

set Φ← {X̂};
set F ← {X1, ..., XN} \ {X̂}.

2: For all pairs (i , j), Xi ∈ F and Xj ∈ Φ
evaluate and save I(Xi , Xj) unless already saved.

3: Set X̂ = argmaxXi

h
I(Y , Xi)− β

P
Xj∈Φ I(Xi , Xj)

i
;

set Φ← Φ ∪ {X̂};
set F ← F \ {X̂},
and repeat from step 2 until |Φ| is desired.
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Learning Feature Transforms by Maximizing Mutual Information
Between Class Labels and Features

g(w,x)

Class labels: c

High-dimens-
ional data: x

Mutual Information 
I(c,y)
(=Information potential)

Gradient

Low dimensional
features: y

w

I

∂
∂

Express I = I({y i , ci}) in a differentiable form and perform gradient ascent
(or other optimization) on w , parameters of the transform g as

w t+1 = w t + η
∂I
∂w

= w t + η

NX
i=1

∂I
∂y i

∂y i

∂w

1st part of the last term: information force that other samples exert to y i ,
2nd part depends on the transform. If y i = Wx i then simply ∂y i

∂W = xT
i .
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Non-Parametric MI between Features and Labels

Labels — discrete random variable C.
Features — continuous, vector-valued Y .

Write IT in between C and Y using the quadratic divergence:

IT (C, Y ) =
X

c

Z
y
(p(c, y)− p(c)p(y))2dy

=
X

c

Z
y

p(c, y)2dy

+
X

c

Z
y

p(c)2p(y)2dy

− 2
X

c

Z
y

p(c, y)p(c)p(y)dy (16)
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Non-Parametric MI between Features and Labels

Using a data set of N samples and expressing class densities as their Parzen
estimates with kernel width σ results in

IT ({y i , ci}) = VIN + VALL − 2VBTW

=
1

N2

NcX
p=1

JpX
k=1

JpX
l=1

G(ypk − ypl , 2σ2I)

+
1

N2

0@ NcX
p=1

„
Jp

N

«2
1A NX

k=1

NX
l=1

G(yk − y l , 2σ2I)

− 2
1

N2

NcX
p=1

Jp

N

JpX
j=1

NX
k=1

G(ypj − yk , 2σ2I) (17)
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Gradient of the Information Potential

First, we need the derivative of the potential, or, the force between two
samples as

∂

∂y i
G(y i − y j , 2σ2I) = G(y i − y j , 2σ2I)

(y j − y i)

2σ2 . (18)

With this we get for VIN

∂

∂yci
VIN =

1
N2σ2

JcX
k=1

G(yck − yci , 2σ2I)(yck − yci). (19)

This represents a sum of forces that other “particles” in class c exert to
particle yci (direction is towards yci ).

∂
∂y i

VALL represents a sum of forces that other “particles” regardless of
class exert to particle yci (towards y i ).

The effect of ∂
∂y i

VBTW away from yci , and it represents the repulsion of
classes away from each other
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Information Potential and Information Forces

Mutual information IT ({y i , ci}) can now be interpreted as an information
potential induced by samples of data in different classes.

∂I/∂y i can be interpreted as an
information force that other samples
exert to sample y i . It has three
components:

1 Samples within a class attract
each other

2 All samples attract each other
3 Samples between classes repel

each other
−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Computing ∂I/∂y i for all y i requires O(N2) operations (Torkkola, 2003).

Torkkola Variable selection, information theory



Information Theory
Mutual Information

Feature Transforms
Further uses for Information Theoretic concepts

Conclusion

Maximizing Mutual Information
Illustrations
Nonlinear Transforms
Reducing computation

Outline

1 Information Theory
Definitions
Mutual Information and Communication Channels
Mutual Information in Practice

2 Mutual Information and classification problems
Class Separability Measures
The Bayes Error
MI in Variable Selection

3 Feature Transforms based on Mutual Information
Maximizing Mutual Information
Illustrations
Nonlinear Transforms
Reducing computation

4 Further uses for Information Theoretic concepts
Learning Distance Metrics
Information Bottleneck

5 Conclusion

Torkkola Variable selection, information theory



Information Theory
Mutual Information

Feature Transforms
Further uses for Information Theoretic concepts

Conclusion

Maximizing Mutual Information
Illustrations
Nonlinear Transforms
Reducing computation

Effect of the kernel width on the forces

Three classes in three dimensions projected onto a two-dimensional
subspace.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Wide kernel

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Narrow kernel
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LDA vs. MMI

Landsat satellite image database from UCI repository: Six classes in 36
dimensions projected onto a two-dimensional subspace using...

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

LDA — compact representation of
classes — on top of each other!

−3

−2

−1

0

1

2

3
−3 −2 −1 0 1 2 3

MMI — classes not as compact —
need not look Gaussian — and
better separated!
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PCI vs. LDA vs. MMI

Three classes in 12 dimensions (oil pipe-flow from Aston University)
projected onto a two-dimensional subspace using PCA (left), LDA or MMI
with a wide kernel (middle), and MMI using a narrow kernel (right).

PCA LDA/MMI wide MMI narrow
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Learning nonlinear transforms using MI

g(w,x)

Class labels: c

High-dimens-
ional data: x

Mutual Information 
I(c,y)
(=Information potential)

Gradient

Low dimensional
features: y

w

I

∂
∂

Exactly the same procedure as with linear transforms. The transform g
just needs to be continuous (differentiable wrt. the parameter vector w ).

The information force remains the same, the transform-dependent part
∂y i/∂w will be different.

w t+1 = w t + η
∂I
∂w

= w t + η

NX
i=1

∂I
∂y i

∂y i

∂w
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Nonlinear transforms

Multilayer perceptrons

Gradient of the output w.r.t.
weights using (information)
backpropagation

Hidden layer activation - tanh
Output layer activation:

Linear: Need
orthonormalized weights in
output layer
Tanh: Can use
data-independent kernel
width

Weight initialization, partially
by LDA

Radial basis function networks

Basis functions by EM
separately for each class as
mixtures of
diagonal-covariance
Gaussians
Two options:

Use MMI only to learn the
output layer (this work)
Learn all the parameters
using MMI
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Stochastic gradient

Instead of interactions between all pairs of data points, take a sample of
just two.

Samples of the same class: NO update! Samples in different classes:

Wt+1 = Wt + η
X
i=1,2

∂I
∂y i

∂y i

∂W

= Wt −
η

8σ2 G(y1 − y2, 2σ2I)(y2 − y1)(x
T
1 − xT

2 ) (20)

Full gradient using all pairs, and stochastic gradient using just one pair at
a time are two ends of a spectrum: It is more desirable to take as large a
random sample of the whole data set as possible, and to compute all the
mutual interactions between those samples for one update of W .
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Semi-Parametric Density Estimation

Construct a Gaussian Mixture Models model in the low-dimensional
output space after a random or an informed guess as the transform:

p(y |cp) =

KpX
j=1

hpjG(y −mpj , Spj) (21)

The same samples are used to construct a GMM in the input space
using the same exact assignments of samples to mixture components as
the output space GMMs have. Running the EM-algorithm in the input
space is now unnecessary since we know which samples belong to
which mixture components.

Now we have GMMs in both spaces and a transform mapping between
the two

Avoid operating in the high-dimensional input space altogether
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Video clips
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Fisher Information

Options to make relevant information more explicit:
1 Variable selection.
2 Feature construction.

Selection/construction matrix defines a global Euclidean metric

d2
A(x , x ′) = (x − x ′)T ST S(x − x ′) = (x − x ′)T A(x − x ′)

3 Learning a distance metric locally relevant to target (or some auxiliary
variable): A = A(x)

d2
A(x , x + dx) = dxT A(x)dx .

Metric should reflect the divergence between conditional distributions of
the target.

d2
J (x , x + dx) = DKL[p(y |x)||p(y |x + dx)] =

1
2

dxT J(x)dx .

Embedded into e.g. a clustering algorithm results in “semi-supervised”
clustering that reflects the auxiliary variable (Peltonen, 2004).
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Information Bottleneck

If X are the original data, Φ is a seeked representation, and Y variable(s) of
importance, minimizing loss function

L(p(φ|x)) = I(X , Φ)− βI(Φ, Y )

leads to

IB solution

1 p(φ|x) = p(t)
Z (β,x)

exp(−βDKL[p(y |x), p(y |φ)])

2 p(y |φ) = 1
p(t)

P
x p(y |x)p(φ|x)p(x)

3 p(φ) =
P

x p(φ|x)p(x)

For example, if X are documents, Y are words, and Φ are word clusters,
probability of cluster membership decays exponentially with KL-divergence
between the word distributions in document x and cluster φ (Tishby, 1999)
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Shannon’s seminal work showed how mutual information provides a
measure of the maximum transmission rate of information through a
channel

Analogy to variable selection and feature construction with mutual
information as the criterion to provide maximal information about the
variable of interest

Best thing since sliced bread for variable selection / feature construction?

Maybe not - estimation problems from high-dimensional small(ish) data
sets
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