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Abstract

We organized a challenge for IJCNN 2007 to assess the added value of prior domain knowledge in machine learn-
ing. Most commercial data mining programs accept data pre-formatted in the form of a table, with each example being
encoded as a linear feature vector. Is it worth spending time incorporating domain knowledge in feature construction
or algorithm design or can off-the-shelf programs working directly on simple low-level features do better than skilled
data analysts? To answer these questions, we formatted five datasets using two data representations. The participants
to the “prior knowledge” track used the raw data, with full knowledge of the meaning of the data representation.
Conversely, the participants to the “agnostic learning” track used a pre-formatted data table, with no knowledge of
the identity of the features. The results indicate that black-box methods using relatively unsophisticated features work
quite well and rapidly approach the best attainable performances. The winners on the prior knowledge track used fea-
ture extraction strategies yielding a large number of low-level features. Incorporating prior knowledge in the form of
generic coding/smoothing methods to exploit regularities in data is beneficial, but incorporating actual domain knowl-
edge in feature construction is very time consuming and seldom leads to significant improvements. The AL vs. PK
challenge web site remains open for post-challenge submissions: http://www.agnostic.inf.ethz.ch/ .

1 Introduction
There has been a lengthy philosophical and scientific debate as to whether or not the brains of children are a “tabula
rasa”, without prior knowledge of their environment. While it is still unclear whether or not this hypothesis holds for
the neocortex, it cannot be refuted that specialized cortices connected to sensory inputs have evolved over millions
of years to process information in a specialized manner. Hence, the brain benefits in a variety of learning tasks from
advanced feature extraction that in some sense embodies a form of “prior knowledge”. Such specialized pre-processing
allows humans and animals to excel in tasks such as face recognition and speech segmentation. On the other hand, the
brain is also capable of learning without the benefit of such specialized pre-processing, for instance, a human expert
can learn to manage an investment portfolio, a task relying upon data representations not readily available from the
sensory cortices. Perhaps evolution has led to an innate preference for “simple solutions” over different problems
arising in a domain, allowing us to complete such tasks without a substantial amount of prior knowledge. Learning
machines are tools designed to help engineers solve problems with as little expense in terms of human labor as possible.
Incorporating “prior knowledge” or “domain knowledge” in a learning machine can be fairly intensive in labor and
expertise, so researchers strive to improve their predictive models to provide good performance without substantial
human intervention. In recent years, this has been made possible, even in cases where the number of examples is small
compared to the dimension of the feature space, with the introduction of a new generation of regularized learning
methods. For the purpose of this paper, we define “prior knowledge” as any form of knowledge about a given task
that may be incorporated in the design of a predictive learning system, prior to training on the data. This may include:
feature information (type of features, topological relationships between features, indications of feature relevance) and
more general information about the nature and goal of the task that can reveal clusters in data, or the presence of
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missing data, etc. For example, in a vision task in which images are encoded as gray level pixels, the knowledge of the
nature of the features and their topological relationships allows the designer to perform specialized image filtering or
to use specialized machine learning architectures, such as the convolutional neural network [17]. An alternative form
of “domain knowledge” used in handwriting recognition is to model the dynamics of handwriting to extract relevant
features from on-line data. Another example is the study of DNA or protein sequence data, where knowledge about
the primary, secondary, and tertiary structure of a molecule improves the identification of active sites. This may be
exploited in specialized kernels used with kernel machines [3].

We decided to assess the real added value of prior/domain knowledge in machine learning by organizing a com-
petition, which we call the AL vs. PK (agnostic learning vs. prior knowledge) challenge. Challenges are important
in several respects: Firstly they help us to answer questions of practical and/or scientific interest. Challenges are an
inherently fair form of comparison as the test data are hidden from the participants and the aim of all the competitors is
to win, and so the comparison involves learning methods applied with considerable care and effort, rather than “straw
men”. This enables the challenge to identify techniques that really work in practice. Secondly challenges push for-
ward the state of the art and raise the standards of research, through the development of new methodologies. Lastly,
they attract new researchers to the field and give them the opportunity to rapidly establish a good reputation within
the research community. The challenge described in this paper was organized for IJCNN 2007. We received 1070
development entries from 50 groups and there were 13 ranked participants in each track for the final submission. In
this paper we analyze the results of the challenge and present our findings.

2 Challenge Design
The design of the challenge was informed by experience gained from the previous competitions that we have orga-
nized [13, 14]. In particular, we used a system of on-line submission, which provided the competitors with immediate
feed-back on a small subset of the data called validation set. The organizers provided initial submissions to bootstrap
the challenge. A toolkit including some of the methods performing best in previous challenges was also provided (the
so-called Challenge Learning Object Package CLOP [24]). At the end of a development period ending February 1st,
2007, the validation set labels were revealed. The final ranking was performed on a large separate test set. The test set
labels will remain hidden to permit meaningful comparison with post-challenge submissions.

The competition had two parallel tracks: For the “agnostic learning” (AL) track we supplied data preprocessed to
provide a simple feature-based representation, suitable for use with any off-the-shelf machine learning or data mining
package. The pre-processing used was identical to that used in the previous Performance Prediction Challenge, but
with a new split of the data. The participants had no knowledge of the identity of the features in the agnostic track.
New in this year’s competition are the raw data representations used in the “prior knowledge” (PK) track, which
are not necessarily in the form of data tables. For instance, in the drug discovery problem the raw data consists of a
representation of the three dimensional structure of the drug molecules; in the text processing problem, the raw data are
messages posted to USENET newsgroups. The participants had full knowledge of the meaning of the representation
of the data in the PK track. Therefore, PK competitors had the opportunity to use domain knowledge to build better
predictors and beat last year’s AL results or make new “agnostic” entries. Note that the training/test splits used are the
same in both tracks, but the example ordering is different in each data subset to hinder matching patterns in the two
representations and/or submitting results with the representation prescribed for the other track.

The challenge started on October 1st, 2006 and ended on August 1st, 2007 (duration: 10 months). Two mile-
stone rankings of the participants were made using the test set, without revealing either the test labels or the test
performances: on December 1st, for the model selection game, and on March 1st, to allow us to publish intermediate
results [15]. To be eligible for the final ranking, submissions had to include results on all the tasks of the challenge
in either track, on the test data. However, recognizing that domain knowledge is task specific, prizes were given for
each task individually in the “prior knowledge” track. For each group, only the last five entries in either track counted
towards the final ranking.

We used the same five data sets as in the IJCNN 2006 challenge, but formatted differently. The tasks are five
two-class classification problems spanning a variety of domains (marketing, handwriting recognition (HWR), drug
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discovery, text classification, and ecology) and a variety of difficulties, with sufficiently many examples to obtain
statistically significant results. The input variables are continuous or binary, sparse or dense. Some raw data repre-
sentations are not feature based. In some problems, the class proportions are very imbalanced. A detailed report on
the data preparation is available [12]. The main data characteristics are summarized in Table 1. Non-feature based
representations are supplied for HIVA (molecular structure) and NOVA (emails) in the PK track.

Table 1: Datasets of the AL vs. PK challenge

Dataset Domain Number of examples Positive class Number of features
(training/validation/test) (% num. ex.) Raw data (for PK) Preprocessed (for AL)

ADA Marketing 4147 / 415 / 41471 28.4 14 48
GINA HWR 3153 / 315 / 31532 49.2 784 970
HIVA Drug discovery 3845 / 384 / 38449 3.5 Molecules 1617
NOVA Text classification 1754 / 175 / 17537 28.5 Text 16969
SYLVA Ecology 13086 / 1309 / 130857 6.2 108 216

Table 2: PK better than AL comparison results

ADA GINA HIVA NOVA SYLVA
Min PK BER 0.170 0.019 0.264 0.037 0.004
Min AL BER 0.166 0.033 0.271 0.046 0.006

Median PK BER 0.189 0.025 0.310 0.047 0.008
Median AL BER 0.195 0.066 0.306 0.081 0.015
Pval ranksum test 5 10−8 3 10−18 0.25 8 10−6 10−18

Jorge Sueiras −
Juha Reunanen [22] + +

Marc Boullé [7] + + − -
Roman Lutz [18] +

Vladimir Nikulin [20] − + +
Vojtech Franc + +

CWW − −
Reference (gcc) [8] + + −

Pvalue sign test 0.31 0.19 0.25 0.25 0.31

3 Results of the AL vs. PK challenge
The final ranking of submissions was based on the balanced error rate (BER) on the test set. The BER is the average
of the error rate on the positive class and the error rate of the negative class. The Area Under the ROC Curve (AUC)
was also computed, but not used for scoring. To obtain the overall ranking we averaged the ranks of participants in
each track after normalizing by the number of entries. The number of submissions was unlimited, but only the five
last “complete” submissions for each entrant in either track were included in the final ranking. For the first few weeks
of the challenge, the top of the rankings were largely dominated by agnostic track (AL) submissions. However, the
learning curves for the agnostic learning and prior knowledge tracks eventually crossed for all datasets, except for
ADA. After approximately 150 days the PK performance asymptote was reached. The asymptotic performances are
reported at the top of Table 2. In contrast, in the IJCNN-06 performance prediction challenge, using the same data as
the AL track, the competitors attained almost their best performances within about 60 days and kept improving only
slightly afterward.
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Figure 1: Distribution of test set Balanced Error Rate (BER). (a) Prior knowledge (PK) track. (b) Agnostic learning
(AL) track. The thin vertical line indicates the best ranked entry (only the 5 last of each participant are ranked).

Figure 1, shows the distribution of the test BER for all entries. There were approximately 60% more submissions
for the AL track than in the PK track. This indicates that the “prior knowledge” track was harder to enter. However,
the participants who did enter the PK track performed significantly better on average than those who entered
the AL track, on all datasets except for HIVA. To quantify this observation we ran a Wilcoxon rank sum test on the
difference between the median values of the two tracks (Table 2). We also performed paired comparisons for entrants
who entered both tracks, using their last 5 submissions. In Table 2, a “+” indicates that the entrant performed best in the
PK track and a “-” indicates the opposite. We see that the entrants who entered both tracks did not always succeed
in obtaining better results in the PK track. The p-values of the sign test do not reveal a significant dominance of PK
over AL or vice versa in that respect (all are between 0.25 and 0.5). However, for HIVA and NOVA the participants
who entered both tracks failed to get better results in the PK track. We conclude that, while on average PK seems to
win over AL, success is uneven and depends both on the domain and on the individuals’ expertise.

Agnostic learning methods
The winner of the “agnostic learning” track is Roman Lutz, who also won the Performance Prediction Challenge
(IJCNN06) [18], using boosting techniques. Gavin Cawley, who joined the organization team and was co-winner
of the previous challenge, made a reference entry using LSSVMs, which slightly outperforms that of Lutz. The
improvements he made can partly be attributed to the introduction of an ARD kernel, which automatically down-
weighs the least relevant features and to a Bayesian regularization at the second level of inference [8, 9]. The second
best entrant is the Intel group, also using boosting methods. The next best ranking entrants include Juha Reunanen and
Hugo Jair Escalante, who have both been using CLOP models provided by the organizers and have proposed innovative
search strategies for model selection: Escalante is using a biologically inspired particle swarm technique [11, 10] and
Reunanen a cross-indexing method to make cross-validation more computationally efficient [22, 23]. Other top ranking
participants in the AL track include Vladimir Nikulin [20] and Jörg Wichard [27] who both experimented with several
ensemble methods, Erinija Pranckeviciene [21] who performed a study of linear programming SVM methods, and
Marc Boullé who introduced a new data grid method [6]. In the following sections, we look into more details at the
methods employed in the “prior knowledge” track to outperform the results of the “agnostic track”.
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ADA: the marketing application
The task of ADA is to discover high revenue people from census data, presented in the form of a two-class classifi-
cation problem. The raw data from the census bureau is known as the Adult database in the UCI machine-learning
repository [16]. The 14 original attributes (features) represent age, workclass, education, education, marital status,
occupation, native country, etc. and include continuous, binary and categorical features. The PK track had access to
the original features and their descriptions. The AL track had access to a preprocessed numeric representation of the
features, with a simple disjunctive coding of categorical variables, but the identity of the features was not revealed. We
expected that the participants of the AL vs. PK challenge could gain in performance by optimizing the coding of the
input features. Strategies adopted by the participants included using a thermometer code for ordinal variables (Gavin
Cawley) and optimally grouping values for categorical variables (Marc Boullé). Boullé also optimally discretized
continuous variables, which make them suitable for a naı̈ve Bayes classifier. However, the advantage of using prior
knowledge for ADA was marginal. The overall winner on ADA is in the agnostic track (Roman Lutz), and the entrants
who entered both tracks and performed better using prior knowledge do not have results statistically significantly bet-
ter. We conclude that optimally coding the variables may be not so crucial and that good performance can be obtained
with a simple coding and a state-of-the-art classifier.

GINA: the handwriting recognition application
The task of GINA is handwritten digit recognition, the raw data is known as the MNIST dataset [17]. For the “agnostic
learning” track we chose the problem of separating two-digit odd numbers from two-digit even numbers. Only the
unit digit is informative for this task, therefore at least 1/2 of the features are distractors. Additionally, the pixels
that are almost always blank were removed and the pixel order was randomized to hide the meaning of the features.
For the “prior knowledge” track, only the informative digit was provided in the original pixel map representation. In
the PK track the identities of the digits (0 to 9) were provided for training, in addition to the binary target values
(odd vs. even number). Since the prior knowledge track data consists of pixel maps, we expected the participants
to perform image pre-processing steps such as noise filtering, smoothing, de-skewing, and feature extraction (points,
loops, corners) and/or use kernels or architectures exploiting geometric invariance by small translation, rotation, and
other affine transformations, which have proved to work well on this dataset [17]. Yet, the participants to the PK track
adopted very simple strategies, not involving a lot of domain knowledge. Some just relied on the performance boost
obtained by the removal of the distractor features (Vladimir Nikulin, Marc Boullé, Juha Reunanen). Others exploited
the knowledge of the individual class labels and created multi-class of hierarchical classifiers (Vojtech Franc, Gavin
Cawley). Only the reference entries of Gavin Cawley (which obtained the best BER of 0.0192) included domain
knowledge by using an RBF kernels with tunable receptive fields to smooth the pixel maps. In the future, it would be
interesting to assess the methods of Simard et al [25] on this data to see whether further improvements are obtained by
exploiting geometrical invariances. The agnostic track data was significantly harder to analyze because of the hidden
class heterogeneity and the presence of feature distractors. The best GINA final entry was therefore on the PK track
and all four ranked entrants who entered both tracks obtained better results in the PK track. Further, the differences in
performance are all statistically significant.

HIVA: the drug discovery application
The task of HIVA is to predict which compounds are active against the AIDS HIV infection. The original data from
the NCI [1] has 3 classes (active, moderately active, and inactive). We brought it back to a two-class classification
problem (active & moderately active vs. inactive), but we provided the original labels for the “prior knowledge” track.
The compounds are represented by their 3d molecular structure for the “prior knowledge” track (in SD format). For
the “agnostic track” we represented the input data as vector of 2000 sparse binary variables. The variables represent
properties of the molecule inferred from its structure by the ChemTK software package (version 4.1.1, Sage Informatics
LLC). The problem is therefore to relate structure to activity (a QSAR - quantitative structure-activity relationship
problem) to screen new compounds before actually testing them (a HTS - high-throughput screening problem). Note
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that in such applications the BER is not the best metric to assess performances since the real goal is to identify correctly
the compounds most likely to be effective (belonging to the positive class). We resorted to using the BER to make
comparisons easier across datasets. The raw data was not supplied in a convenient feature representation, which made it
impossible to enter the PK track using agnostic learning methods, using off-the-shelf machine learning packages. The
winner in HIVA (Chloé-Agathe Azencott of the Pierre Baldi Laboratory at UCI) is a specialist in this kind of dataset,
on which she is working towards her PhD [2]. She devised her own set of low level features, yielding a “molecular
fingerprint” representation, which outperformed the ChemTK features used on the agnostic track. Her winning entry
has a test BER of 0.2693, which is significantly better than the test BER of the best ranked AL entry of 0.2827 (error
bar 0.0068). The results on HIVA are quite interesting because most agnostic learning entrants did not even attempt to
enter the prior knowledge track and the entrants that did submit models for both tracks failed to obtain better results
in the PK track. One of them working in an institute of pharmacology reported that too much domain knowledge is
sometimes detrimental; experts in his institute advised against using molecular fingerprints, which ended up as the
winning technique.

NOVA: the text classification application
The data of NOVA come from the 20-Newsgroup dataset [19]. Each text to classify represents a message that was
posted to one or several USENET newsgroups. The raw data is provided in the form of text files for the “prior
knowledge” track. The preprocessed data for the “agnostic learning” track is a sparse binary representation using
a bag-of-words with a vocabulary of approximately 17000 words (the features are simply frequencies of words in
text). The original task is a 20-class classification problem but we grouped the classes into two categories (politics
and religion vs. others) to make it a two-class problem. The original class labels were available for training in the PK
track but not in the AL track. As the raw data consist of texts of variable length it was not possible to enter the PK
track for NOVA without performing a significant pre-processing. All PK entrants in the NOVA track used a bag-of-
words representation, similar to the one provided in the agnostic track. Standard tricks were used, including stemming.
Gavin Cawley used the additional idea of correcting the emails with an automated spell checker. No entrant who
entered both tracks outperformed their AL entry with their PK entry in their last ranked entries, including the winner!
This is interesting because the best PK entries made throughout the challenge significantly outperform the best AL
entries (BER difference of 0.0089 for an error bar of 0.0018), see also Figure 1. Hence in this case, the PK entrants
overfitted and were unable to select among their PK entries those, which would perform best on test data. This
is not so surprising because the validation set on NOVA is quite small (175 examples). Even though the bag-of-words
representation is known to be state-of-the-art for this kind of applications, it would be interesting to compare it with
more sophisticated representations. To our knowledge, the best results on the 20 Newsgroup data were obtained by the
method of distributional clustering by Ron Bekkerman [4].

SYLVA: the ecology application
The task of SYLVA is to classify forest cover types. The forest cover type for 30 x 30 meter cells was obtained from
US Forest Service (USFS) Region 2 Resource Information System (RIS) data [5]. We converted this into a two-class
classification problem (classifying Ponderosa pine vs. everything else). The input vector for the “agnostic learning“
track consists of 216 input variables. Each pattern is composed of 4 records: 2 true records matching the target and
2 records picked at random. Thus 1/2 of the features are distractors. The “prior knowledge” track data is identical to
the “agnostic learning” track data, except that the distractors are removed and the meaning of the features is revealed.
For that track, the identifiers in the original forest cover dataset are revealed for the training set. As the raw data was
already in a feature vector representation, this task was essentially testing the ability of the participants in the AL
track to perform well in the presence of distractor features. The PK track winner (Roman Lutz) in his Doubleboost
algorithm exploited the fact that each pattern was made of two records of the same pattern to train a classifier with
twice as many training examples. Specifically, a new dataset was constructed by putting the second half of the data
(variables 55 to 108) below the first half (variables 1 to 54). The new dataset is of dimension 2n times 54 (instead
of n times 108). This new dataset is used for fitting the base learner (tree) of his boosting algorithm. The output

6



of the base learner is averaged over the two records belonging to the same pattern. This strategy can be related to
the neural network architectures using “shared weights”, whereby at training time, the weights trained on parts of the
pattern having similar properties are constrained to be identical [17]. This reduced the number of free parameters of
the classifier.

4 Conclusion
This paper presented the results of the IJCNN 2007 competition, whose goal was to compare two approaches in ma-
chine learning: the “agnostic learning” (AL) approach putting all the effort on the classifier and the “prior knowledge”
(PK) approach capitalizing on human domain knowledge. The challenge was very successful in attracting a large
number of participants who competed in the two tracks. For the first few months of the challenge, AL lead over PK,
showing that the development of good AL classifiers is considerably faster. As of March 1st 2007, PK was leading
over AL on four out of five datasets. We extended the challenge five more months, but few significant improvements
were made during that time period. On datasets not requiring real expert domain knowledge (ADA, GINA, SYLVA),
the participants entering both track obtained better results in the PK track, using a special-purpose coding of the inputs
and/or the outputs, exploiting the knowledge of which features were uninformative, and using “shared weights” for
redundant features. On the datasets requiring most real expert domain knowledge (HIVA and NOVA), several entrants
failed to capitalize on prior knowledge. For both HIVA and NOVA, the winning data representation consisted of a
high-dimensional vector of low level features (“molecular fingerprints” and “bag-of-words”). From the analysis of this
challenge, we conclude that agnostic learning methods are very powerful. They quickly yield (in 40 to 60 days) a level
of performance close to the best achievable performance. General-purpose techniques for exploiting prior knowledge in
the encoding of inputs or outputs or the design of the learning machine architecture (e.g. via shared weights) may pro-
vide an additional performance boost, but exploiting real domain knowledge is both difficult and time consuming. This
fact seems to be a recurrent theme in machine learning publications and further confirmation is provided by the results
of our challenge. Future work includes incorporating the best identified methods in our challenge toolkit, CLOP. The
challenge web site remains open for post-challenge submissions at http://www.agnostic.inf.ethz.ch/,
where supplementary analyzes and complete result tables are also made available.

Acknowledgments
We are very thankful to the institutions that originally provided the data. The organization of this challenge was a team effort to which many have
participated. We are particularly grateful to Olivier Guyon (MisterP.net) our webmaster. Prof. Joachim Buhmann (ETH Zurich) who provided
computer resources and all the advisors, beta-testers and sponsors are gratefully acknowledged (see http://www.agnostic.inf.ethz.ch/
credits.php for a full list). The Challenge Learning Object Package (CLOP) is based on code to which many people have contributed [26, 24].
This project is supported by the Pascal network of excellence funded by the European Commission and the National Science Foundation under
Grants N0. ECCS-0424142 and N0. ECCS-0736687. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the National Science Foundation. Amir Safari acknowledges the support of the FWF
Austrian Joint Research Project Cognitive Vision under projects S9103-N04 and S9104-N04 and the EU FP6-507752 NoE MUSCLE IST project.

References
[1] J. M. Collins Associate Director. The DTP AIDS antiviral screen program. http://dtp.nci.nih.gov/

docs/aids/aids_data.html, 1999.
[2] C. A. Azencott, A. Ksikes, S. J. Swamidass, J. H. Chen, L. Ralaivola, and P. Baldi. One- to four-dimensional ker-

nels for virtual screening and the prediction of physical, chemical, and biological properties. J. Chem. Inf. Model.,
2007 http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/ci600397p.

[3] P. Baldi. Bioinformatics: The machine learning approach. The MIT press, Cambridge, Massachusetts, 2001.
[4] R. Bekkerman, R. El-Yaniv, N. Tishby, and Y. Winter. Distributional word clusters vs words for text categoriza-

tion. 2003. Code available at http://www.cs.technion.ac.il/˜ronb/.
[5] J. A. Blackard and D. J. Dean. Forest cover type. http://kdd.ics.uci.edu/databases/

covertype/covertype.html, 1998.

7
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