AlvsPK Challenge: FACT SHEET

Title: Hybrid approach for learning

Name, address, email: Mehreen Saeed, FAST National University of Computer &

Emerging Science, Lahore, Pakistan, mehreen.saeed@nu.edu.pk

Acronym of your best entry: SubmitA

Reference:

N/A

Method:

- Preprocessing: Standardize, shift-n-scale, normalize

- <u>Feature selection</u>: Removed the sparse features whose percentage of non-zero entries was below as certain number.

- Classification
 - Used mixture models for finding clusters within data. I wrote down my own routine for generating the mixture parameters
 - For binary data, Bernoulli mixture models were used. For continuous data Gaussian mixture models were used
 - Neural network and gentleboost from CLOP / spider was used for learning the conditional class probabilities as a function of class label
 - Did you use ensemble methods? No
 - Did you use "transduction" or learning from the unlabeled test set? No
- Model selection/hyperparameter selection: 5-fold cross-validation was used

Results:

Table 1: Our methods best results

Dataset	Entry name	Entry ID	Test BER	Test AUC	Score	Track
ADA	Submit D final	1037	0.181	0.8185	0.1022	Agnos
GINA	Submit A final	1034	0.0495	0.9507	0.3162	Agnos
HIVA	Submit D final	1037	0.305	0.6976	0.4418	Agnos
NOVA	Submit E final	1038	0.0456	0.9552	0.0385	Agnos
SYLVA	Submit C final	1036	0.0094	0.9906	0.2864	Agnos
Overall	Submit D final	1037	0.1194	0.8812	0.2786	Agnos

Table 2: Winning entries of the AlvsPK challenge

Best results agnostic learning track								
Dataset	Entrant name	Entry name	Entry ID	Test BER	Test AUC	Score		
ADA	Roman Lutz	LogitBoost with trees	13, 18	0.166	0.9168	0.002		
GINA	Roman Lutz	LogitBoost/Doubleboost	892, 893	0.0339	0.9668	0.2308		
HIVA	Vojtech Franc	RBF SVM	734, 933, 934	0.2827	0.7707	0.0763		
NOVA	Mehreen Saeed	Submit E final	1038	0.0456	0.9552	0.0385		
SYLVA	Roman Lutz	LogitBoost with trees	892	0.0062	0.9938	0.0302		
Overall	Roman Lutz	LogitBoost with trees	892	0.1117	0.8892	0.1431		
Best results prior knowledge track								
Dataset	Entrant name	Entry name	Entry ID	Test BER	Test AUC	Score		
ADA	Marc Boulle	Data Grid	920, 921, 1047	0.1756	0.8464	0.0245		
GINA	Vladimir Nikulin	vn2	1023	0.0226	0.9777	0.0385		
HIVA	Chloe Azencott	SVM	992	0.2693	0.7643	0.008		
NOVA	Jorge Sueiras	Boost mix	915	0.0659	0.9712	0.3974		
SYLVA	Roman Lutz	Doubleboost	893	0.0043	0.9957	0.005		
Overall	Vladimir Nikulin	vn3	1024	0.1095	0.8949	0.095967		

- quantitative advantages : Dimensionality reduction
- qualitative advantages: Novel approach that combines both the advantages of a generative and a discriminative classifier.

Code: If CLOP or the Spider were used, fill out the table:

Dataset	Spider command used to build the model
ADA	
GINA	
HIVA	
NOVA	
SYLVA	

I used spider/clop commands and added my own objects to the spider library. I implemented my own version of the expectation maximization algorithm in C++ and called this routine from matlab.

Keywords: Put at *least one keyword in each category*. Try some of the following keywords and add your own:

- Preprocessing or feature construction: centering, scaling, standardization
- Feature selection approach: frequency count
- Feature selection engine: Very simple matlab routine
- Feature selection search: Brute force
- Feature selection criterion: data statistics
- Classifier: Neural networks, SVM, boosting, mixture model
- Hyper-parameter selection: cross-validation
- Other: post-processing, 'bias' option