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Summary

� 1) Gradient-based method as a core optimization tool with such examples as quadratic
minimization and logit model (base models).

� 2) Distance-based clustering and non-linear classifier (ENV-2006, PAKDD-2006).

� 3) An ensemble system as a sequence of several different basemodels (ADA).

� 4) Effectiveness of the linear and non-linear SVM (GINA and NOVA).

� 5) One of the base models plus several association rules (SYLVA).

� 6) Feature selection using mean-variance filtering model (HIVA).

� 7) Concluding remarks and further developments.

⋆ This work was supported by a grant of the Australian ResearchCouncil.
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The formulation of the problem

Let X = (xt, yt) , t = 1..n, be a training sample of observations wherext is ℓ-
dimensional vector of features, andyt is binary label:yt ∈ {−1, 1}.

In practical situation the labelyt may be hidden, and the task is to estimate it
using vector of features. Let us consider the most simple linear decision function

ut =

ℓ∑

j=1

wj · xtj + b (1)

wherewi are weight coefficients andb is a bias term.

We will make decision̂yt = 1 if ut ≥ λ, alternatively, we will conclude that
ŷt = −1 whereλ is a threshold regulation parameter.

The optimization criterion is to minimize the balanced error rate (BER):

Q(λ) =
1

2

(
q12

q11 + q12
+

q21

q21 + q22

)
(2)

where value ofqij equal to the number ofj-predictions in the true cases ofi = 1..2.
Unfortunately, the target function (2) can not be optimizeddirectly. Respectively,
we will consider several alternative (differentiable) target functions assuming that
the corresponding models will produce good solutions in thesense of (2).
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Quadratic Minimization ( QM) model

Let us consider the most basic quadratic minimization modelwith the following
target function:

L(w) =
n∑

t=1

(yt − ut)
2
. (3)

The direction of the steepest decent is defined by the gradient vector

g(w) = {gj(w), j = 1..ℓ},

where

gj(w) =
∂L(w)

∂wj

= −2
n∑

t=1

xtj (yt − ut) .

Initial values of the linear coefficientswi and bias parameterb may be arbitrary.
Then, we recompute the coefficients

w
(k+1) = w

(k) + ∆k · g(w(k)), (4a)

b(k+1) = b(k) +
1

n

n∑

t=1

(yt − ut) (4b)

wherek is a sequential number of iteration. Minimizing (3) we find size of the step
according to the formula

∆ =
L1 − L2∑n

t=1 s2
t

(5)

where

L1 =

n∑

t=1

styt, L2 =

n∑

t=1

stut, st =

ℓ∑

j=1

xtjgj.
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Selection of the threshold parameter
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Fig. 1. Behavior of theBER (2) as a function of the parameterλ (a): HIVA, (b): ADA.



Learning with Mean-Variance Filtering, SVM and Gradient-based Optimization 5

Logit Model

Let us consider a non-linear modification of the target function

L(w) =

n∑

t=1

(yt − f(ut))
2 (6)

wheref(t) = 1−e−t

1+e−t .

Newton’s Method

The objective of the Newton’s method is to find a solution for the equation

g(w) = 0,

which represents necessary condition of an optimum.

The following equation may be used as a base for the iterativealgorithm and is
called Newton’s step

w
(k+1) = w

(k) −∇2L(w(k))−1g(w(k))

where∇2L is a matrix of second derivatives of the target function.

As a target function we used log-likelihood function

L(w) =

n∑

t=1

[zt log {Pt} + (1 − zt) log {1 − Pt}] (7)

wherezt = 0.5 · (1 + yt),

Pt =
eut

1 + eut

whereut =
∑ℓ

j=0 wj · xtj, and in order to simplify notations a constant is regarded
as one of the features.
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Distance-based clustering and non-linear classifier

Using k-means algorithm we can split the whole training dataset into several sub-
sets/clusters where any cluster is represented by centroid. Then, we can compute
vector of coefficients specifically for any particular cluster.

The complex of two matrices 1) centroids and 2) coefficients may be used as a
nonlinear classifier, which works as follows:

� 1) for any data-instance we find the nearest centroid;
� 2) compute decision function according to the corresponding vector of regression

coefficients.

Above method has been proved to be very effective in application to the KDD-99
intrusion detection database. Also, it produced good results for the PAKDD-2006
and for the Environmental Modelling Competition.
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An Ensemble System

The solutions as an outcome of linear and logit models are farfrom identical. Re-
spectively, these models may be used together. For example,assuming that linear
model is leading, we can make decision if

|ut − λ| ≥ δ > 0 : ŷt = 1 if ut ≥ λ + δ, ŷt = −1 if ut ≤ λ − δ.

Suppose that|ut−λ| < δ. In this case, we can employ, for example, logit model,
and will make decision if|f(ũt)−λ1| ≥ δ1 > 0 (using similar technique as above).

The case|ut − λ| ≤ δ and|f(ũt) − λ1| ≤ δ1 may be regarded as a disputable
and will require some additional investigation, which may be conducted using third
model or we can return to the first model, for example.

The threshold parametersλ andλ1 may be selected as a result of the separate
or combined optimizations for linear and logit models against the training set. The
parametersδ andδ1 represent levels of confidence in relation to the linear and logit
models.
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Support Vector Machines: (a): behavior of the target function in the case of
GINA-set; (b): coefficientsα were sorted in a decreasing order
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Fig. 2.
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Behavior of the of theBER as a function of the parameterλ (a): GINA, (b):
NOVA
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Fig. 3.
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Onelevel DTrees

OneLevel pattern:
Aj := {t : xtj ≥ 1}, nj = #Aj;

Outcome:
Bj := {t ∈ Aj : C}, mj = #Bj;

C = {yt = −1}.

Criterions:
1)nj ≥ α (confidence); 2)

mj

nj

≥ β (support)

whereα = 200, β = 0.999 (28 patterns in the case ofSYLVA).

SecondLevel DT

Aij := {t : xti ≥ 1, xtj ≥ 1}, nij = #Aij;

Outcome:
Bij := {t ∈ Aij : C}, mij = #Bij.

Criterions:
1)nij ≥ α (confidence); 2)

mij

nij

≥ β (support).

Continue untilAI = ∅.
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Mean-Variance: main idea

Using one of the base models we can compute vector of coefficients w0 for the
whole training set with an excellent simulation result. An application ofw0 to an-
other set may produce inconsistently poor results. In this situation it will be good
to investigate stability of the particular coefficients as acomponents of the vector
w0. In other words, it is very important to clarify consistencyof the influence of
different features depending on the different parts of training set.
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Mean-Variance model

Using as a base the whole training setX we can form several subsetsXj with
approximately equal size:X = ∪m

j=1Xj. Note, that subsetsXj must be sufficiently
large. Respectively, they may have not empty intersections.

C = {yt = −1}.

As a next step we compute matrix of coefficients where any row corresponds to the
particular subsetXj.

We removed features according to the condition

ri =
Mi − mi

min
t∈[mi,Mi]

|t|
≥ H, i = 1..ℓ, (8)

whereH > 0 is a threshold parameter,mi andMi are minimal and maximal values
of the coefficientwi.

Remark 1. Experiments with

ri =
si

µi

(9)

produced slightly worse results whereµi is a sample mean andsi is a standard
deviation of the coefficient with indexi.
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Cross-Validation
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Fig. 5.Matrix of BERs before and afterMVF.
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Concluding remarks

Table 1.Best test entries

Dataset AUC BER GuessBER Guess error

ADA 0.8225 0.1851 0.1650 0.0201
GINA 0.9348 0.0566 0.0600 0.0034
HIVA 0.6605 0.3515 0.2500 0.1015
NOVA 0.9474 0.0507 0.0500 0.0007
SYLVA 0.9913 0.0122 0.0100 0.0022

Overall 0.8713 0.1312 0.1070 0.0261

Further developments

� 1) ICA & MVF.

� 2) Smoothed MVF.

� 3) MultiLevel DTrees and RF.


