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1. Highlights of Our Approach

1. Base Classifier: Fast Logistic Regression (Powered by Liblinear)
2. Probability Output of LR together with Random Queries
3. ALC and AUC Oriented Parameter Tuning
4. Applications to Text Genre Identification

2. Datasets for Development

Dataset Domain Feat. num. Sparsity(%) Train/Test num.
HIVA Chemo-informatics 1617 90.88 21339
IBN_SINA Handwriting recognition 92 80.67 10361
NOVA Text Processing 16969 99.67 9733
ORANGE Marketing 230 9.57 25000
SYLVA Ecology 216 77.88 72626
ZEBRA Embryology 154 0.04 30744

3. Datasets for Competition

Dataset Feat. Type Feat num. Sparsity(%) Missing(%) Train num. Test num.
A mixed 92 79.02 0 17535 17535
B mixed 250 46.89 25.76 25000 25000
C mixed 851 8.6 0 25720 25720
D binary 12000 99.67 0 10000 10000
E continuous 154 0.04 0.0004 32252 32252
F mixed 12 1.02 0 67628 67628

4. Performance and Rank of Our Team - "TEST" on Competition Sets

Dataset AUC Ebar ALC Rank
A 0.8831 0.0052 0.3472 11
B 0.6980 0.0044 0.3383 4
C No Submission
D 0.9623 0.0033 0.6576 4
E 0.7896 0.0044 0.4483 6
F 0.9796 0.0017 0.7007 7

Overall Not Applicable

5. First set of predictions given only one positive sample

1. A. Random predictions
2. B. Distances to the only sample
3. C. Clustering / One-class Classification (Costly, parameter-dependent)
4. D. Semi-supervised learning (Costly, hard to calibrate)

AUC of First Prediction

ALEX HIVA IBN_SINA NOVA ORANGE SYLVA ZEBRA
A. Random 0.4953 0.5106 0.5141 0.5073 0.5033 0.5056 0.4924
B. Distance 0.6366 0.3820 0.1689 0.2606 0.5000 0.5000 0.5000

Observations: random guess at the beginning is not too bad.

6. Subsequent Queries and Models

6.1 L2-Logistic Regression Model on Queried Samples

min
w

1

2
wTw + C

l∑
i=1

log(1 + e−yiw
Txi).

A fast implementation based on trust region Newton method is available in
Liblinear.
Its probability outputs are used as uncertainty scores for query.
Parameter C is tuned to maximize the AUC score in 4-fold cross validation.

6.2 Initial Query and LR Model
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Random Prediction − Random Query − LR Prediction
Distance − Distance Query − LR Prediction
Distance − Random Query − LR Prediction
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First of the five linear-step queries. Except for ALEX, the random guess with
random query becomes a good baseline.

6.3 Combining Random Query and LR Probability in Query
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LR Probability & Random Query
LR probability Query
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7. Applications to Text Genre Identification
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8. Conclusions & Discussions

∙Fast LR, Random & LR Probability Queries
∙Question 1: For the first prediction and query, how to (efficiently) outper-

form random guess?
∙Question 2: How to extend to multi-class/structural outputs?
∙Question 3 Submiting/retrieving queries on client machine (e.g. web ser-

vice api, XML format) rather than checking webpage each time.
∙Other sampling strategy?

 Quasi−Random Sampling  Uniform Random Sampling
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