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Background

= Proteins participate in most of the biochemical
processes in the cell

s SwissProt: Protein sequence database. Contains
~140K sequences

= Enzymes: facilitate chemical reactions
= Enzyme Commission (EC) numbers: n1.n2.n3.n4

= SwissProt contains 35K enzymes which belong to
~750 EC classes



Similarity / Representation

= Similarity:
= Weighted edit distance: Smith-Waterman and BLAST
methods

= Model-based, e.g. HMM (Haussler et al.)
= Fisher kernels (Jaakkola et al.)

= Vector-space representation:
= Extract a set of properties (amino acid counts etc.)

= Represent a sequence in the space of all 20k k-mers
(spectrum and mismatch kernels, Leslie et al.)

= Motif composition



Protein Sequence Motifs
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Computing Motif Composition

Represent motif database in a TRIE with motifs in leaf nodes
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The Motif Representation

= A “bag of motifs” representation of a protein sequence:
! Motif j
P (z) = (pm(T)) e p=Lotbase

\[Motif Counﬂ

= A high dimensional feature vector: motif database can
contain several hundred thousand motifs

K(z,z') = ®(z) - ©(z))

The motif kernel is a linear kernel that essentially counts
the number of motifs two sequences have in common



Assessing Motifs as Features
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For each class of enzymes we compute a statistic for each
feature:
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Feature Selection Results

= Feature selection using the L, (multiplicative update)
method of Weston et al. compared with SVM trained

on all features:
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Classification Results

= KNN works very well:
= Success rate on all data: 0.94 (same as SVM)
= One-against-rest comparison with SVM:

Area under ROC50 curve Balanced Success Rate
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Conclusion

= Motifs: highly discriminative features for predicting the
function of a protein

= Can provide low dimensional, interpretable classifiers
= Domain knowledge required

Things | haven’t mentioned:
= Discrete motifs vs. scoring matrices
= Custom motif databases for enzyme classification
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