Sequence Motifs: Highly Predictive Features for Protein Function Prediction

Asa Ben-Hur and Douglas Brutlag Department of Biochemistry, Stanford

Background

- Proteins participate in most of the biochemical processes in the cell
- SwissProt: Protein sequence database. Contains ~140K sequences
- Enzymes: facilitate chemical reactions
- Enzyme Commission (EC) numbers: n1.n2.n3.n4
- SwissProt contains 35K enzymes which belong to ~750 EC classes

Similarity / Representation

Similarity:

- Weighted edit distance: Smith-Waterman and BLAST methods
- Model-based, e.g. HMM (Haussler et al.)
- Fisher kernels (Jaakkola et al.)
- Vector-space representation:
 - Extract a set of properties (amino acid counts etc.)
 - Represent a sequence in the space of all 20^k k-mers (spectrum and mismatch kernels, Leslie et al.)
 - Motif composition

Protein Sequence Motifs

- Evolutionarily conserved sequence elements
- Represented as regular expressions or as positionspecific scoring matrices
- Known to be part of protein functional sites:
 - Catalytic sites
 - Binding sites

Syntax: substitution group wildcards group k[ilmv]...hq

Computing Motif Composition

Represent motif database in a TRIE with motifs in leaf nodes

The Motif Representation

A "bag of motifs" representation of a protein sequence:

$$\Phi(x) = (\phi_m(x))_{m \in \mathcal{M}}$$

$$\boxed{\text{Motif Count}}$$

 A high dimensional feature vector: motif database can contain several hundred thousand motifs

$$K(x, x') = \Phi(x) \cdot \Phi(x')$$

The motif kernel is a linear kernel that essentially counts the number of motifs two sequences have in common

Assessing Motifs as Features

For each class of enzymes we compute a statistic for each feature:

Feature Selection Results

Feature selection using the L₀ (multiplicative update) method of Weston et al. compared with SVM trained on all features:

features for each class

Balanced Success Rate:

Classification Results

- KNN works very well:
 - Success rate on all data: 0.94 (same as SVM)
 - One-against-rest comparison with SVM:

Area under ROC50 curve

Balanced Success Rate

Conclusion

- Motifs: highly discriminative features for predicting the function of a protein
- Can provide low dimensional, interpretable classifiers
- Domain knowledge required

Things I haven't mentioned:

- Discrete motifs vs. scoring matrices
- Custom motif databases for enzyme classification