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Dimensionality Reduction

• For many distributions, it is plausible that most of the variations

observed in the data can be explained by a small number of causal

factors.

• If that is true there should exist a lower-dimensional coordinate

system in which the data can be described with very little loss.

• Dimensionality reduction methods attempt to discover such

representations.

• The reduced-dimension data can be fed in input for supervised

learning.

• Unlabeled data can be used to discover the lower-dimensional

representation.



Learning Modal Structures of the Distribution

Manifold learning and clustering

= learning where are the main high-density zones

Learning a transformation that reveals “clusters” and manifolds:

⇒

Cluster = zone of high density separated from other clusters by regions of

low density

N.B. it is not always dimensionality reduction that we want, but rather

“separating” the factors of variation. Here 2D→ 2D.



Local Linear Embedding (LLE)

Dimensionality reduction obtained with LLE:

(£g. S. Roweis)



LLE: Local Af£ne Structure

The LLE algorithm estimates the local coordinates of each example in the

basis of its nearest neighbors. Then looks for a low-dimensional

coordinate system that has about the same expansion.

min
w
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||xi −
∑
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wijxj ||2 s.t.
∑
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→ solving an eigenproblem with sparse n× n matrix (I −W )′(I −W )



ISOMAP

Fig. from Tenenbaum et al 2000:

Isomap estimates the geodesic distance along the manifold using the

shortest path in the nearest neighbors graph:

distance along path = sum of Euclidean distances between neighbors.

Then look for a low-dimensional representation that approximates those

geodesic distances in the least square sense (MDS).



ISOMAP

Fig. from Tenenbaum et al 2000:

1. Build graph with 1 node/example, arcs for k-NN

2. for k-NN, weight(arc(xi, xj)) = ||xi − xj ||2

3. new distance(xi, xj) = geodesic distance in graph [cost O(n3)]

4. map distance matrix to dot product matrix: − 1
2 (Dij − D̄i− D̄j +

¯̄D)

5. embedding yi = i-th entry of principal eigenvectors



Spectral Clustering and Laplacian Eigenmaps

• Normalize kernel or Gram matrix divisively:

K̃(x, y) =
K(x, y)

√

Ex[K(x, y)]Ey[K(x, y)]

• map xi→ (α1i, . . . , αki) where αk is k-th e-vector of Gram matrix.

• principal e-vectors→ reduced dim. data = Laplacian eigenmaps

(e.g. Belkin uses that for semi-supervised learning; see also justi£cation

as a non-parametric regularizer)

• spectral clustering: perform clustering on the embedded points (e.g.

after normalizing by dividing by their norm).

Fig. from (Weiss, Ng, Jordan 2001)



Spectral Embedding Algorithms

Many unsupervised learning algorithms, e.g.

Spectral clustering, LLE, Isomap, Multi-Dimensional
Scaling, Laplacian eigenmaps

have this structure:

1. Start from n data points D = {x1, . . . , xn}
2. Construct a n× n “neighborhood” matrix M̃

(with corresponding [often DATA-DEPENDENT] kernel K̃D(x, y))

3. “Normalize” M̃ , yielding M

(implicity built with corresponding kernel KD(x, y))

4. Compute k largest (equivalently, smallest) e-values/e-vectors (`k, vk)

5. Embedding of xi = i-th elements of each e-vector vk (possibly scaled

by
√
`k) NO EMBEDDING FOR TEST POINTS: Generalization?



Results: What they converge to

•What happens as the number of examples increases?

• These algorithms converge towards learning eigen-functions of a
linear operator Kp de£ned with a data-dependent kernel K and the
true data density p(x): (Kpg)(x) =

∫

K(x, y)g(y)p(y)dy.

N.B. E-fns solve Kpfk = λkfk.

eigen-vectors→ eigen-functions



Empirical Linear Operator

We associate with each data-dependent Kn a linear operator Gn and with

K∞ a linear operator G, as follows:

Gnf =
1

n

n
∑

i=1

Kn(·, xi)f(xi)

and

G∞f =

∫

K∞(·, y)f(y)p(y)dy

so Gn →Kp (law large nb)

• Thm: the Nyström formula gives the eigenfunctions of Gn up to

normalization.

• Normalization converges to 1 as n→∞, also by law of large nb.

• Thm: If Kn converges uniformly in prob. and if the e-fns fk,n of Gn

converge uniformly in prob., then they converge to the corresponding

e-fns of G∞.



Results: What they minimize

• Problem with current algorithms: no notion of generalization error!

• New result: they min. training set avg of reconstruction loss

(K(x, y)−
∑

k λkfk(x)fk(y))
2,

i.e. £nd fk e-fns of Kp̂ (p̂ : empirical density).

⇒ corresponding notion of generalization error: expected loss.

⇒ SEMANTICS = approximating / smoothing the notion of similarity
given by the kernel.

Generalizes the notion of learning a feature space, i.e. kernel PCA:

K(x, y) ≈ g(x).g(y)

to the case of negative eigenvalues (which may occur!)



Results: Extension to new Examples

• Problem with current algorithms: only the low-dim coordinates of
training examples can be computed!

•Nyström formula: Out-of-sample extensions can be
de£ned:
(which match the kernel PCA projection in pos. semi-de£nite case)

fk(x) =
1
λk

∑n

i=1 vikK(x, xi)

to obtain embedding fk(x) or
√
λkfk(x) for new point x.

• New theoretical results apply to kernels not necessarily positive

semi-de£nite (e.g. Isomap), and give a simple justi£cation based on the
law of large numbers.



Out-of-sample Error ≈ Training Set Sensitivity
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Equivalent Kernels for Generalizing the Gram Matrix

With E[] averages over D (not including test point x):

• for spectral clustering and Laplacian eigenmaps:

K(a, b) =
1

n

K̃(a, b)
√

Ey[K̃(a, y)]Ey′ [K̃(b, y′)]

• for MDS and Isomap:

K(a, b) = −1

2
(d2(a, b)−Ey[d

2(y, b)]−Ey′ [d2(a, y′)]+Ey,y′ [d2(y, y′)])

d is geodesic distance for Isomap: the test point x is not used to shorten

the distance between training points.

Corollary

The out-of-sample formula for Isomap is equal to the Landmark Isomap
formula for the above equivalent kernel.



Algorithms with Better Generalization

• a kernel can be de£ned for LLE and Isomap. Experiments on LLE,
Isomap, spectral clustering, and Laplacian eigenmaps, show that the

resulting out-of-sample extensions work well: difference in embedding
when test point is included or not in training set is comparable to the
embedding pertubation from replacing a few examples from the
training set.

• Generalization can be improved by replacing the empirical density
p̂ by a smoother one p̃ (a non-parametric density estimator). We used

different sampling approaches and showed that statistically signi£cant

improvements can be obtained on real data.



Challenge: Curved Manifolds

Current manifold learning algorithms cannot handle highly curved

manifolds because they are based on locally linear approximations that

require enough data locally to characterize the principal tangent directions

of the manifold.

tangent directions

tangent plane

Data on a curved manifold



Other Local Manifold Learning Algorithms

Other examples of local manifold learning algorithms which would fail in

the presence of highly curved manifolds:

• Mixture of factor analyzers

• Manifold Parzen windows (Vincent & Bengio 2002)

Approximate the density locally by a pancake, specifying only a few

“interesting directions”, but still locally linear, requires enough data

locally to discover those directions and their relative variance.



tangent directions

tangent image

tangent directions

tangent image

shifted
image

PROBLEM: a 1 pixel
translation yields a tangent
image that is very different
(almost no overlap)

high−contrast image

Highly Curved Manifolds



Myopic vs Far-Reaching Learning Algorithms

•Most current algorithms are myopic because they must rely on highly

local data to characterize the density.

•We should develop algorithms that allow one to generalize far from the

training set, for example sharing information about global parameters that

describe the structure of the manifold.

• In fact it is possible to parametrize the geometric operations on images

as well as many other manifolds through Lie Group operations (e.g. a

global single matrix characterizes horizontal translation).



Approximation of Lie Group Operators

• Consider images obtained by applying geometric operators to the view

of an object (translations, rotations, scaling, etc...). Long-range

deformation y of an original image x:

y = e
∑

i
αiGix

x, y are pixel vectors, the Gi are operator matrices (one per

transformation), αi = how much Gi to apply.

• (Rao & Ruderman 1999, “Learning Lie Groups for Invariant Visual

Perception”) show that one can learn G for translation of 1D images using

pairs of images with a small translation and the approximation

eαG ≈ (1 + αG)

→ quadratic optimization of α’s (separately for each image pair) given G

or G given the α’s.



Conclusions

• High-dimensional data are both interesting and important to
understand what it means to really generalize.

• Unsupervised learning: capturing the dependencies between a large
number of variables, e.g. with manifold learning.

• Amazing progress in the last few years: non-linear manifolds can be
learned, with easy to optimize convex criteria.

• We have uni£ed a large family of unsupervised learning algorithms
and extended them to produce coordinates for new examples.

• They turn out to be methods to learn internal representations of the
data that are faithful to a prior notion of similarity between objects.

• Great challenges ahead: how to deal with highly curved manifolds,
i.e. how to generalize far from the training examples.

• Manifolds can be parametrized in richer ways, using parameters that
have global extent, allowing to generalize to really fresh examples.


