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Outline

• PLS
- Please Listen to Svante Wold
- Partial-Least Squares
- Projection to Latent Structures

• Kernel PLS (K-PLS)
- cfr Kernel PCA
- Kernel makes PLS model nonlinear
- Regularization by selecting small number of latent variables

• Direct Kernel PLS
- Direct Kernel Methods
- Centering the Kernel

• Feature Selection with Analyze/StripMiner
- Filters: Naïve feature selection: drop “cousin features”
- Wrappers: Based on sensitivity analysis
è Iiterative procedure
è Training set for feature selection used in bootstrap mode





• Direct Kernel PLS is PLS with the kernel transform as a pre-processing step
- K-PLS è “better” nonlinear PLS
- PLS è “better” Principal Component Analysis (PCA) for regression

• K-PLS gives almost identical (but more stable) results as SVMs
- Easy to tune (5 latent variables)
- Unlike SVMs there is no patent on K-PLS

• K-PLS transforms data from a descriptor space to a t-score space

Kernel PLS (K-PLS)
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Linear Model:
- PCA model
- PLS model
- Ridge Regression
- Self-Organizing Map

. . .

Implementing Direct Kernel Methods
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Scaling, centering & making the test kernel centering consistent



Docking Ligands is a Nonlinear Problem



• Surface properties are encoded on 0.002 e/au3 surface 
Breneman, C.M. and Rhem, M. [1997] J. Comp. Chem., Vol. 18 (2), p. 182-197

• Histograms or wavelet encoded of surface properties give Breneman’s
TAE property descriptors

• 10x16 wavelet descriptore

Electron Density-Derived TAE-Wavelet Descriptors

PIP (Local Ionization Potential)

Histograms

Wavelet Coefficients



Acknowledgment: C. Breneman

Data Preprocessing

• Data Preprocessing for Competition
- data centering
- to normalize or not? (no)

• General Data Preprocessing Issues:
- extremely important for the success of an application
- if you know what the data are you can do smarter preprocessing
- drop features with extremely low correlation coefficient and sparsity
- outlier detection and cherry picking?



Feature Selection

• Why feature selection
- explanation of models
- simplifying models
- improving models

• Naïve feature selection (filters):
- drop all features that are more than 95% correlated but one 
- drop features with less than 1% sparsity (binary features)
- drop features with extremely low correlation coefficient

• Sensitivity analysis for feature selection (wrappers)
- make model (e.g., SVM, K-PLS, neural network)
- keep features frozen at average
- tweak all features and drop 10% of the least sensoitive features
è boostrap mode
è random gauge parameter

• Note: For most competition datasets we could find an extremely
small feature set that works perfect on training date, but did
not generalize to validation data.



DATASET
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• Hydrophobicity - a.don
• Size  and Shape - ABSDRN6, SMR.VSA2, ANGLEB45     Large is 

bad. Flat is bad. Globular is good.
• Polarity – PEOE.VSA...:  negative partial charge good.

§ Each star 
represents a 
descriptor

§ Each ray is a  
separate 
bootstrap

§ The area of a 
star represents 
the relative 
importance of 
that descriptor

§ Descriptors 
shaded cyan 
have a 
negative effect

§ Unshaded ones 
have a positive 
effect 

Caco-2 – 14 Features (SVM)



Conclusions

• Thanks to competition organizers for a challenging and fair competition
• Congratulations to the winners
• Congratualtions to those who ranked in front of me


