Feature Extraction with Description Logics Functional Subsumption

> Rodrigo de Salvo Braz Dan Roth

University of Illinois at Urbana-Champaign

A conflict

- Most machine learning algorithms use feature vectors as inputs.
- ? Most data is best represented as structured data.
- ? Feature extraction is the conversion from one to the other (and may be most of the work).

Structured data – I

Mohammed Atta met with an Iraqi intelligence agent in Prague in April 2001

Structured data – II

Feature Extraction

Feature Extraction

- ? Typically done in ad hoc fashion:
 ? Prevents general analysis;
 - ? Prevents Feature Extraction/Learning unified analysis (e.g. kernels).
- ? Using a language is tricky
 - ? Type of inference.
 - ? May be intractable if not careful.

A language for declaring which features to generate

Feature Description Logics

(AND (SOME spouse ANY) (SOME child (AND male tall)))

Subsumption

[?]A description C *subsumes* (\supseteq) a description D if every individual in D must be in C, no matter the interpretation.

?Subsumption is tractable.

C = (AND (SOME spouse ANY) (SOME child male)) D = (AND (SOME spouse (SOME student ANY)) (SOME child (AND tall male)) (SOME child female))

A problem in practice

Subsumption would be natural in this case but does not occur

A problem in practice

A problem in practice

Make comparison more flexible

²At core of subsumption algorithm is the comparison of attributes:

 \dots if (attr1 == attr2) \dots

We simply make that a function call:

... if (f (attr1, attr2) == 1) ...

Is this just a hack?

What about the nice DL semantics?

Is this just a hack?

What about the nice DL semantics? n fact, equivalent to "shallow OR" (*tractable*).

Is this just a hack?

What about the nice DL semantics? n fact, equivalent to "shallow OR" (*tractable*). Replace any attr by (OR $a_1 a_2 ... a_n$) 'here f(attr, a_i) = 1.

AND kill (SOME object JFK))

AND (OR kill murder sassinate) (SOME object (OR JFK kennedy "John F. Kennedy" ...))

Why not just use shallow OR then?

[?]Function is an implicit representation.
[?]We may incorporate procedural knowledge:
[?]Typos;

? Similar sounding words;

? Context-sensitive knowledge.

Take home message

- Feature Description Logics provides an expressive way to deal with structured examples.
- ? Syntax choices render it tractable.
- Allows for FE-learning integrated approaches
 like kernels (Cumby & Roth 2003).
- [?] Can be made even more expressive with little extra cost by functional subsumption.

The End