Automated Feature Extraction for Object Recognition

I.Levner and V.Bulitko

http://ircl.cs.ualberta.ca

Outline

- Motivation
- System Overview
- Feature Extraction Problem
- Conclusion

MOTIVATION

Large volumes of image data

- Military
- Industrial
- Scientific

Volcanoes on Venus

MRI image of a brain tumor

Medical

Aerial Plantation Image

Current Approach

Domain Experts Analyze and Interpret Images

- costly
- error-prone
- tedious

Automated Image Interpretation

Static Sequence of Operators applied regardless of input image characteristics On-line Control Policy adaptively selects a sequence of operators

States, Actions and Processing Levels within ADORE

User-provided Training Datum

Machine Learning

Problem

Automated Image Interpretation still requires <u>manual feature selection</u> by domain and vision experts

[Draper00][Levner03a]

Problem

Automated Image Interpretation still requires <u>manual feature selection</u> by domain and vision experts

[Draper00][Levner03a]

Solution

• Use <u>dimensionality reduction</u> techniques to compress raw data and in the process **extract relevant features**

Preliminary Experiments

Compare performance of on-line policies using:

No features.

• Classical approach using best single sequence regardless of data characteristics. (**Static**)

PCA coefficients as features

• together with 1-NN (various metrics)

Raw Pixels as features

• together with 1-NN (various metrics)

Hand-Crafted features

• HSV color histograms as features showed best performance when used by artificial neural networks [Levner03a].

Results

Hand-Crafted methods still outperform automated approaches

FUTURE RESEARCH

• Focus of Attention Processing

- smaller input image size
- reduce image variance

• Non-linear manifold learning methods

- -kPCA, pPCA
- -MDS, LLE, Isomap
 - require knn + distance metric ?

Incremental PCA methods

- allow larger sample size
- Library of Feature Extractors

References

- B. Draper, et al., ADORE: Adaptive Object Recognition. *Videre*, 1(4):86–99, 2000.
- I. Levner, et al., **Towards automated creation of image interpretation systems**. In Proceedings of *Australian Joint Conference on Artificial Intelligence*, 2003.
- I. Levner, et al., Automated Feature Extraction for Object Recognition, In Proceedings of the *Image and Vision Computing New Zealand* conference, 2003.