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MOTIVATION

Large volumes of image data

o Military
e Industrial
e Scientific

e Medical

Volcanoes on Venus

MRI image of a brain
tumor




Current Approach

Domain Experts Analyze and Interpret Images

e costly

e error-prone

e tedious




Automated Image Interpretation
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States, Actions and Processing Levels within ADORE

I Data Tokens = MDP States I Raw Image

Grab Image (No Op)

i

™> Gaussian Smooth Median filter

Color Image

Convert (No Op)

r
Gray image

Histogram Intersection
Color

RGB Segmentation Histogram Intersection

Probability map

Threshold Binary i

Image Processing Routines

Threshold Binar Flood Fill

MDP Actions

Segmented image

Submit Labe

Final image




User-provided Training Datum
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Problem

Automated Image Interpretation
still requires manual feature selection

by domain and vision experts




Problem

Automated Image Interpretation
still requires manual feature selection

by domain and vision experts

Solution

e Use dimensionality reduction techniques to compress raw data and
in the process extract relevant features




Preliminary Experiments

Compare performance of on-line policies using:

No features.

 Classical approach using best single sequence regardless of data
characteristics. (Static)

PCA coefficients as features

* together with 1-NN (various metrics)

Raw Pixels as features

 together with 1-NN (various metrics)

Hand-Crafted features

* HSV color histograms as features showed best performance when used
by artificial neural networks [Levner03a].



Results

Hand-Crafted methods still
outperform automated approaches
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FUTURE RESEARCH

® Focus of Attention Processing

- smaller input image size
- reduce image variance

¢ Non-linear manifold learning methods

-kPCA, pPCA
-MDS, LLE, Isomap

- require knn + distance metric ?

e Incremental PCA methods
- allow larger sample size

e Library of Feature Extractors
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