

NIPS03 Workshop of Feature Extraction and Feature Selection Challenge

Feature Selection using/for Transductive Support Vector Machine

Mr. Zhili Wu Dr. Chun-hung Li

Department of Computer Science Hong Kong Baptist University

Contents

- Introduction to Feature Selection
- Why TSVM works
- Technique sharing not limited by TSVM
- Several technique highlights
- Conclusion
- Your comments & doubts

Feature selection (Competition) - Impact of Weston's Dataset selection

- Your algorithm A*
- Other's algorithms A₁, ..., A_n
- You have M=2^d-1 possible feature sets for a d-dimensional dataset: F₁,...,F_M
- $L(A,D(F_i)) = loss of algorithm A on dataset D(F_i)$
- Your goal: find a feature set F^* in $F_1,...,F_M$ so that $L(A^*,D(F^*)) < min_{1,...,n} (L(A_i,D(F^*)))$

"No Free Feature" Theorem

- From "No Free Brunch" (Weston NIPS 2002)
- •The generalization error of two datasets for all algorithms is the same $E_A[R_{gen}^A[D]] = E_A[R_{gen}^A[D']]$
- Since any two feature sets induce two new datasets $E_A[R_{gen}^A[D(F)]] = E_A[R_{gen}^A[D(F')]]$
- Consequence: Techniques are very important!

Transductive SVM (SVMLight by Joachims)

Algorithm TSVM: Input: - training examples $(\vec{x}_1, y_1), \dots, (\vec{x}_n, y_n)$ - test examples $\vec{x}_1^*, \ldots, \vec{x}_k^*$ Parameters: $-C.C^*$: parameters from OP(2) $-num_+$: number of test examples to be assigned to class + Output: - predicted labels of the test examples y_1^*, \dots, y_k^* $(\vec{w}, b, \vec{\xi}, -) := solve_svm_qp([(\vec{x}_1, y_1)...(\vec{x}_n, y_n)], [], C, 0, 0);$ Classify the test examples using $\langle \vec{w}, b \rangle$. The num_+ test examples with the highest value of $\vec{w} * \vec{x}_j^* + b$ are assigned to the class $+ (y_j^* := 1)$; the remaining test examples are assigned to class $- (y_j^* := -1)$. $C_{-}^{*} := 10^{-5}$: // some small number $C_{+}^{*} := 10^{-5} * \frac{num_{+}}{k - num_{+}}$: while $((C^* < C^*) \parallel (C^* < C^*))$ // Loop 1 $(\vec{w}, b, \vec{\xi}, \vec{\xi^*}) := solve_svm_qp([(\vec{x}_1, y_1)...(\vec{x}_n, y_n)], [(\vec{x}_1^*, y_1^*)...(\vec{x}_k^*, y_k^*)], C, C_-^*, C_+^*);$ while $(\exists m_{i}l:(y_{m}^{*} * y_{l}^{*} < 0)\&(\xi_{m}^{*} > 0)\&(\xi_{l}^{*} > 0)\&(\xi_{m}^{*} + \xi_{l}^{*} > 2))$ { // Loop 2 $y_m^* := -y_m^*;$ $y_1^* := -y_1^*;$ // take a positive and a negative test // example, switch their labels, and retrain $(\vec{w}, b, \vec{\xi}, \vec{\xi^*}) := solve_svm_qp([(\vec{x}_1, y_1)...(\vec{x}_n, y_n)], [(\vec{x}_1^*, y_1^*)...(\vec{x}_k^*, y_k^*)], C, C_-^*, C_+^*);$ } $C^*_{-} := \min(C^*_{-} * 2, C^*); \\ C^*_{+} := \min(C^*_{+} * 2, C^*);$ return $(y_1^*, \dots, y_k^*);$

Simpler Explanation to TSVM

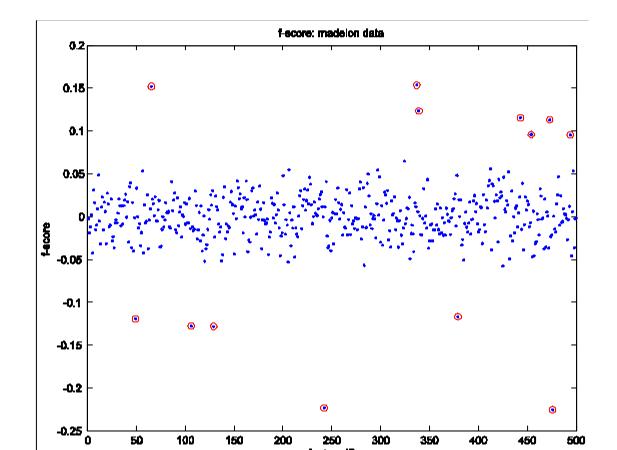
 Train a SVM on labeled data only
 Predict unlabeled data to an assigned fraction of Pos, others being Neg
 Train the whole dataset

 switch some pairs of Pos/Neg for some goodness measure, repeat 3

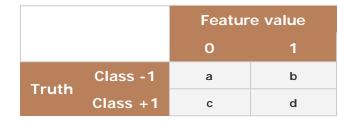
 Repeat 2 & 3 till unlabeled data contribute much

Why TSVM Works for FS Competition

- unlabeled (validating+testing) data provided
- accuracy is the first priority measure
- Fraction of Pos/Neg unlabeled samples provided
- Also, effective & compatible tools:
 - Dr. Chih-Jen Lin's SVMLIB
 - SVMLIB + SVMLIGHT


Feature Selection Using/for Transductive SVM (TSVM) - Technique Summary

	Arcene	Gisette	Dexter	Dorothea	Madelon
	Normalize 1 (O mean, unit std)				
Score		Fisher Score	F-score	Odd Ratio	F-score
	7~20 PCs by PCA		D_ij/Sqrt(row- sum*col-sum)	D_ij/Sqrt(row- sum*col-sum)	Normalize 1
			Scale feature by f-score	Scale feature by f-score	
Kernel	RBF (C=2^5, g=2^-6)	Poly 2	Linear	Linear (C+/C- =19.5)	RBF (g=1,c=1)
Transduction	Yes	yes	Yes	No	Yes
Further feature reduction			Use w to select feature and rescale feature		
Remarks:	Model selection by CV seems to overfit ?			MI, BNS, BER score, F-score	T-test
BER & (Rank by submissions on 1st/Dec)		1.58(11th)	4.4(6th)	11.52(11th)	


Madelon – A Fisher-Score Variant

- $(\mu_{+} \mu_{-})/(s_{+} + s_{-})$
- 13 features are selected

Dorothea oddRatio

- ExpProb oddRatio¹ for unbalanced class
 exp(P(1|class+) P(1|class-)) = exp(d/(c+d) b/(a+b))
- Other Measures like BNS², MI, ...
- Is BER a score indicating goodness of features? The balanced error rate (BER) is the average of the errors on each class: BER = 0.5*(b/(a+b) + c/(c+d)).

Feature selection for unbalanced class distribution and Naïve Bayes, Dunja Mladenic, Marko Grobelnik
 An Extensive Empirical Study of Feature Selection Metrics for Text Classification, *George Forman*, JMLR 2003 special issue on variable and feature selection

Dexter: A Simple Linear-TSVM-RFE

- 1. Prune some features using scores easily calculated
- 2. Rescale remaining features by scores
- 3. Train a Linear TSVM (with good generalization ability)
- 4. Calculate the feature weight w
- 5. Rank features and rescale features by w
- 6. Repeat 3~5 till a balance of feature relevance & accuracy

Conclusion

- 1. No Free Feature
- 2. TSVM
- 3. Techniques
 - 1. Scoring Methods
 - 2. TSVM RFE
- 4. Other important issues not mentioned:
 - 1. Model selection
 - 2. Normalization
 - 3. ...

Your Comments!

Thanks !